
Store Languages of Automata Models, with
Applications

Ian McQuillan

Department of Computer Science,
University of Saskatchewan,

Canada

Supported by Natural Sciences and Engineering Research Council of Canada (NSERC)

1 / 52

University of Saskatchewan

2 / 52

Store Languages

Much (but not all) of this work is based on joint work with Oscar Ibarra:

• On Store Languages of Language Acceptors. Theoretical Computer
Science, 745: 114-132, 2018.

• On Store Languages and Applications. Information and
Computation, 267: 28-48, 2019.

3 / 52

Automata Models

• There are many different types of automata models that have been
studied.

• Standard models include:
• an input tape that is either one-way or two-way,

• a finite state set,

• a nondeterministic or deterministic finite control,

• zero or more types of data stores.

4 / 52

Pushdown Automata

• A one-way pushdown automaton (NPDA) has a one-way input and
a pushdown stack as data store.

• Each transition can push, pop, or keep the same pushdown contents.

• Given a machine M = (Q,Σ, Γ, δ, q0,F), configurations look like

(q,w , γ),

where q ∈ Q is the current state, w ∈ Σ∗ is the remaining input,
and γ ∈ Γ∗ is the current contents of the stack.

• The language accepted by M,
L(M) = {w ∈ Σ∗ | (q0,w ,Z0) ⊢ · · · ⊢ (qf , λ, γ), qf ∈ F}.

5 / 52

Example

Consider the non-regular language

{w$wR | w ∈ {a, b}∗}.

This can be accepted by a pushdown automaton M with transitions

δ(q0, a, x) → (q0, push(a)) for all x ∈ {Z0, a, b},
δ(q0, b, x) → (q0, push(b)) for all x ∈ {Z0, a, b},
δ(q0, $, x) → (q1, stay) for all x ∈ {Z0, a, b},
δ(q1, a, a) → (q1, pop),
δ(q1, b, b) → (q1, pop),
δ(q1, λ,Z0) → (qf , stay).

6 / 52

Store Configurations and Store Languages

• Given a configuration (q,w , γ), the store configuration is a string
encoding of the state and data store, qγ.

• The store language of M, S(M), is the set of all store configurations
that can appear in any accepting computation.

• That is,

S(M) = {qγ | (q0,w ,Z0) ⊢∗ (q,w ′, γ) ⊢∗ (qf , λ, γ
′), qf ∈ F}.

7 / 52

Consider M accepting {w$wR | w ∈ {a, b}∗} with transitions

δ(q0, a, x) → (q0, push(a)), δ(q0, b, x) → (q0, push(b)),
δ(q0, $, x) → (q1, stay)∀x , δ(q1, a, a) → (q1, pop),
δ(q1, b, b) → (q1, pop), δ(q1, λ,Z0) → (qf , stay).

• Given any γ ∈ {a, b}∗, q0Z0γ ∈ S(M) because there is an accepting
computation (q0, γ$γ

R ,Z0) ⊢∗ (q0, $γ
R ,Z0γ) ⊢∗ (qf , λ,Z0).

• Given any γ ∈ {a, b}∗, q1Z0γ ∈ S(M) because there is an accepting
computation (q0, γ$γ

R ,Z0) ⊢∗ (q1, γ
R ,Z0γ) ⊢∗ (qf , λ,Z0).

• No other words that start with q0 or q1 are in S(M) because there is
no accepting computation that pops or pushes Z0.

• The only word that starts with qf in S(M) is qf Z0, as the only way
to accept when passing over qf is to end in qf and the stack be Z0.

8 / 52

Store Languages of Pushdown Automata

• The store language S(M) is q0Z0(a+ b)∗ + q1Z0(a+ b)∗ + qf Z0.

• Hence, there are NPDAs M such that L(M) is not a regular
language, but S(M) is a regular language.

• How complex can store languages get?

9 / 52

Store Languages of Pushdown Automata

Shown in S. Greibach, A note on pushdown store automata and regular
systems, Proceedings of the American Mathematical Society 18 (1967).

Theorem (Greibach, 1967)

For every NPDA M, S(M) is a regular language.

See also proof in Handbook of Formal Languages, Volume A, chapter on
Context-Free Languages by Autebert, Berstel, and Boasson.

10 / 52

Store Languages of Pushdown Automata

Theorem (Geffert, Malcher, Meckel, Mereghetti, Palano,
DCFS 2013)

Given a NPDA M with Γ for pushdown alphabet, an NFA accepting
S(M) has at most |M|2|Γ|+ 1 states.

• They also prove this is optimal.

Theorem (Malcher, Meckel, Mereghetti, Palano, DCFS
2012)

Given an NPDA M, an NFA accepting S(M) can be constructed in
polynomial time.

11 / 52

Application

• This result on pushdown automata can be used to prove that regular
canonical systems produce regular languages.

J. R. Büchi, The Collected Works of J. Richard Büchi, 1990,
Chapter: Regular Canonical Systems.

12 / 52

Other Kinds of Automata

• We wanted to study the store languages of other types of automata
with different data stores.

• We defined generally something called a store type.

• Within this formal system, we can define many different types of
stores.

13 / 52

Store Types

A store type describes:

• infinite alphabet Γ of available as store symbols,
• the allowable instructions I ,
• the read function, a partial function from Γ∗ to Γ,
• the write function, a partial function from Γ∗× I to new contents Γ∗,
• the initial store configuration,
• an “instruction language” that can restrict the allowable sequences
of instructions.

14 / 52

Store Types

Given store types Ω1, . . . ,Ωk , we can define a

• one-way nondeterministic machine with Ω1, . . . ,Ωk ,

• one-way deterministic machine with Ω1, . . . ,Ωk ,

• two-way nondeterministic machine with Ω1, . . . ,Ωk ,

• two-way deterministic machine with Ω1, . . . ,Ωk .

The mode is either one-way nondeterministic, one-way deterministic,
two-way nondeterministic, or two-way deterministic.

15 / 52

Machines

• Given store types Ω1, . . . ,Ωk and a mode, we can examine the class
M of all machines with those stores using that mode.

• L(M) is the family of languages accepted by machines in M.

• S(M) is the family of store languages of machines in M.

• E.g. for the pushdown store type, and consider NPDA, the class of
all one-way nondeterministic machines with a pushdown. Then

L(NPDA) = CFL and S(NPDA) ⊆ REG.

16 / 52

Multiple Stores

• When there are multiple stores, the store language concatenates
them all together over separate alphabets.

• E.g. a reversal-bounded k-counter machine is a machine with k
counters, where there is a bound on the number of times each
counter can switch between increasing and decreasing.

• Each word of the store language is of the form qc i11 · · · c ikk where
c1, . . . , ck are fixed letters associated with the counters.

• Essentially, the states are treated like their own finite store.

17 / 52

Turing Machines

Definition

Make a Turing tape store type. Let M be machines with a one-way
(read-only) input and one Turing tape. Words in the store language are
of form qua

↱

v where read/write head is scanning symbol a.

Theorem

There is a fixed word x such that RE = {(x)−1S(M) | M ∈ M}.

Proof.

Given language L ∈ RE, let M ′ be a one-tape Turing machine accepting
L. Let q be a new state. Make M ∈ M which starts by copying input to
worktape, move tape head left to blank, switch to state q, then simulate
M ′ using other states. Hence, (q␣

↱

)−1S(M) = L.

18 / 52

Finite-Turn Turing Machines

Definition

A finite-turn Turing machine has a one-way read-only input tape with a
read/write worktape that can change directions at most k times on any
accepting computation, for some k .

Model studied by Greibach, TCS 1978.

Theorem

Let M be the finite-turn Turing machines. Then S(M) ⊆ REG.

Theorem

Let M be the reversal-bounded queue machine. Then S(M) ⊆ REG.

19 / 52

Finite-Visit Turing Machines

Definition

A finite-visit Turing machine has a one-way read-only input tape with a
read/write worktape that can visit each cell at most k times on any
accepting computation, for some k .

The family of languages is more powerful than finite-turn Turing
machines (Greibach, One-way finite visit automata, TCS 1978).

Theorem (unpublished, Friesen, Jirásek, IM)

Let M be the finite-visit Turing machines. Then S(M) ⊆ REG.

20 / 52

Flip-Pushdowns

Definition

A one-way k-flip pushdown automaton has a pushdown that can be
“reversed” up to k times.

Model studied by Holzer and Kutrib, DLT 2003, ICALP 2003.

Theorem

Let M be the k-flip pushdown automata. Then S(M) ⊆ REG.

21 / 52

Reversal-Bounded Counters

Definition

A reversal-bounded is a counter, which can be incremented and
decremented and tested for zero, but can only change directions at most
a bounded number of times.

Let NCM be one-way machines with some number of reversal-bounded
counters. Let DCM be one-way deterministic machines.

Theorem

S(NCM) ⊆ L(DCM).

22 / 52

Adding Reversal-Bounded Counters

Theorem

Let M be one-way machines with one of the following stores:

• pushdown,

• finite-turn Turing tape

• reversal-bounded queue

• k-flip pushdown

and some number of reversal-bounded counters. Then
S(M) ⊆ L(NCM).

23 / 52

Stack Automata

Definition

A stack store type is like a pushdown automaton (can push/pop), but it
can also read from the stack in a two-way read-only mode. It can only
use push/pop when the read/write head is at the top.

Let STACK be the class of one-way nondeterministic stack automata.

Example

{wk | w ∈ {a, b}∗, k ≥ 2} ∈ L(STACK).

Stack automata are far more powerful than pushdown automata.

24 / 52

Stack Automata

Theorem (Bensch, Björklunc, Kutrib, IJFCS 2017)

Then S(STACK) ⊆ REG.

• Words in the store language contain read/write head
↱

.

• This is a complicated proof.

• We’ll return to this result shortly.

25 / 52

Other Modes

• So far we’ve looked at one-way nondeterministic automata.

• What about one-way deterministic and two-way inputs?

26 / 52

One-Way Nondeterministic vs.
One-Way Deterministic

Theorem

Let Ω1, . . . ,Ωk be store types, let MN (resp. MD) be one-way
nondeterministic (resp. deterministic) machines with these store types.
Then S(MN) = S(MD).

27 / 52

One-Way vs. Two-Way

• Given any class of two-way automata that accepts a finite-language,
the store languages are “the same” as one-way automata.

Theorem

Let Ω1, . . . ,Ωk be store types.
Let 1M be one-way nondeterministic machines with those stores, and
2M be the two-way nondeterministic machines with those stores.

Let L be a family closed under homomorphism. Then the following are
equivalent:

1. S(1M) ⊆ L,

2. S({M ∈ 1M | L(M) = {λ}}) ⊆ L,

3. S({M ∈ 2M | L(M) is finite}) ⊆ L,

28 / 52

Corollary

For any M in the following:

• two-way pushdown automata,

• two-way finite-turn Turing machines,

• two-way finite-visit Turing machines,

• two-way k-flip pushdown automata

• two-way stack automata,

if M ∈ M with L(M) finite, then S(M) ∈ REG.

Similarly if we add reversal-bounded counters for all examples above
except stack automata, then S(M) ∈ L(NCM).

29 / 52

Infinite Languages

• What about two-way machines that do not accept finite languages.

Proposition

There is a two-way deterministic one counter machine (that scans input
twice) such that S(M) is not regular (nor semilinear).

30 / 52

Stack Automata

Theorem (Ginsburg, Greibach, Harrison, Stack Automata
and Compiling, JACM 1967)

The set of all words that can appear in the store of a two-way stack
automaton M on a single input word w ∈ Σ∗ when M “falls off” the
right end-marker of w is a regular language.

• This was the main step in showing all two-way stack automata
languages accept recursive languages. To decide if w accepts, first
build that regular set.

• From this, it is very easy to prove that for all two-way stack
automata accepting {λ}, the store language is regular.

31 / 52

Generally: Applications to Decidability Properties

Theorem

Let Ω1, . . . ,Ωk be store types.
Let 1M be one-way nondeterministic machines with those stores, and 2M be the
two-way nondeterministic machines with those stores. Let L be a language family
closed under homomorphism with a decidable emptiness problem.

If either S(1M) ⊆ L or S({M | M ∈ 2M, L(M) ⊆ {λ}) ⊆ L (effectively), then
both are true, the emptiness and membership problems are decidable in 1M, and
the membership problem is decidable in 2M.

Proof.

By previous theorem, it is enough to use 1M.
Given M ∈ 1M, to decide emptiness, construct S(M) ∈ L, which is empty if and
only L(M) is empty.
To decide membership of w in M ∈ 2M, construct M ′ ∈ 1M that remembers w
in the state and simulates M on w and accepts λ if M accepts w , and nothing
otherwise.

32 / 52

Application to Stack Automata

If we prove the store languages of two-way stack automata on one
word are regular, this proves

• decidability of membership in two-way stack automata,
• store languages of one-way stack automata are regular,
• emptiness and membership are decidable for one-way stack automata.

If we prove the store languages of one-way stack automata are
regular, this proves

• the store language of two-way automata on finite languages are
regular,

• membership for two-way stack automata is decidable,
• membership and emptiness are decidable for one-way stack automata.

33 / 52

Application

When studying a one-way model M, you get a lot of results for free if
you can show S(M) ⊆ L, where L has a decidable emptiness problem.

34 / 52

Right Quotient

Definition

Let L,R ⊆ Σ∗. LR−1 = {u | w = uv ∈ L, v ∈ R}.

• All families accepted by standard one-way nondeterministic
automata are closed under right quotient with regular languages.

• For one-way deterministic machines, some families are closed under
right quotient with regular languages.

• Deterministic pushdown automata and deterministic stack automata
are closed under right quotient with regular languages. Both used
separate difficult ad hoc proofs.

• This has been left unsolved for many classes of deterministic
automata.

35 / 52

Right Quotient

Proposition

Let Ω1, . . . ,Ωk be store types where there is a ‘stay’ instruction that is
available at any point, and at any point it is possible to read each letter
of the store one at a time, either from left-to-right or from right-to-left.

Let MN (resp. MD) be the one-way nondeterministic (resp.
deterministic) machines using these stores.

If S(MN) ⊆ REG then L(MD) is closed under right quotient with
regular languages.

36 / 52

Proof.

• Let M1 ∈ MD ,M2 ∈ DFA. We will build M ∈ MD accepting
L(M1)L(M2)

−1.

• First build M3 ∈ MN that on input w simulates M1 until an
nondeterministically guessed spot after u where w = uv in state q,
where it switches to q′, then q′′ where in parallel it both continues
the simulation of M1 and also simulates M2 on v .

• So S(M3) is regular, and so is T = S(M3) ∩ Q ′Γ∗ (Q ′ are the
primed states). A DFA can be built accepting T and TR .

• Finally build a deterministic M ∈ MD that on input u simulates M1

until the end of the input, then checks if the current store
configuration is in T or TR .

37 / 52

Right Quotient

• In the above theorem, the stores had to be able to read from
left-to-right or right-to-left at any point.

• Variants of Turing tapes, stack automata, checking stack automata
cannot do this because they cannot read from end at any point.

• The proof can be adjusted to accommodate these stores with a
slight modification.

38 / 52

Right Quotient

Corollary

The languages accepted by the following one-way deterministic classes
are closed under right quotient with regular languages:

• deterministic stack languages [Hopcroft, Ullman, 1968],
• deterministic checking stack languages,
• deterministic k-flip pushdown languages,
• deterministic pushdown automata [Ginsburg, Greibach,1966],
• deterministic one counter automata [Eremondi, Ibarra, IM 2017],
• deterministic reversal-bounded queue automata,
• deterministic Turing machines with a finite-turn worktape,
• deterministic Turing machines with a finite-crossing worktape.

To our knowledge, all without a citation were previously unknown.

39 / 52

Application to Verification

Definition

Given a machine M and a set of store configurations C :

• pre∗M(C) is the set of store configurations that can eventually lead
to store configurations in C .

• post∗M(C) is the set of store configurations that are eventually
reachable from a store configuration in C .

These are commonly studied in model checking and reachability
community.

Theorem (Bouajjani, Esparza, Maler, CONCUR 1997)

Given a NPDA M and C ∈ REG, pre∗M(C) and post∗M(C) are regular.

40 / 52

General Relationship With Store Languages

Definition

A set of machines M can be loaded by sets from some family L if, for all
M ∈ M with state set Q and store configuration sets C ∈ L, then there
is a machine M ′ ∈ M with state set Q ′ ⊇ Q that on input qγx, can
put γ on the stores using states in Q ′ −Q, then switch to q and simulate
M on x .

• Every type of automata we talked about can be loaded by regular
languages.

• E.g. for NPDA: given qγx, push γ on the pushdown (using states
not in Q) then switch to q and continue simulating M on x .

41 / 52

General Relationship With Store Languages

Definition

A set of machines M can be unloaded by sets from some family L if, for
all M ∈ M with state set Q and store configuration sets C ∈ L, then
there is a machine M ′ ∈ M with state set Q ′ ⊇ Q that on input qγx,
can switch to configuration qγ using states in Q ′ − Q, then it simulates
M on x , and after reading $, checks if the current configuration is in C .

• Every type of automata we talked about can be unloaded by regular
languages.

• E.g. for NPDA: given qγx, push γ on the store (using states not
in Q) then switch to q, then continue simulating M on x until $ in
configuration pα.

• To verify pα is in C , M ′ simulates a DFA accepting CR by popping
one symbol at a time in reverse.

42 / 52

General Relationship With Store Languages

Theorem

Let M be any machine model that can be loaded and unloaded by sets
C from L1 ⊇ REG, and let L2 ⊇ REG be closed under intersection.

S(M) ⊆ L2 if and only if post∗M(C) ∈ L2 and pre∗M(C) ∈ L2, for all
C ∈ L1,M ∈ M.

43 / 52

General Relationship With Store Languages

Theorem

Let M of any of the following types:

• NPDA,
• one-way stack automata,
• r -flip NPDA,
• reversal-bounded queue automata,
• finite-turn Turing machines,
• finite-visit Turing machines.

For all M ∈ M and regular configuration sets C , pre∗M(C) and post∗M(C)
are regular.

44 / 52

General Relationship With Store Languages

• To our knowledge, this was previously unknown for all families
besides NPDA.

• The proof for NPDA can follow from the store language result.

• Also implies that for many machine models (optionally with
reversal-bounded counters), and C ∈ L(NCM), we have pre∗M(C)
and post∗M(C) ∈ L(NCM).

45 / 52

Common Configurations

Definition

Given two machines M1,M2 from a model M, the common store
configuration problem is to determine if there is some non-initial
configuration that appears in an accepting computation of both M1 and
M2.

• Has applications to fault-tolerance/safety.

• Put all faulty configurations in M2, and check if there’s a common
configuration.

46 / 52

Common Configurations

Theorem

Let M be a machine model, and L be a language family such that

• S(M) ⊆ L,

• L has a decidable emptiness problem,

• L is closed under intersection.

Then M has a decidable common store configuration problem.

So all the models with either regular or L(NCM) store languages have a
decidable common store configuration problem.

47 / 52

Other Applications

Store languages were a key component of the following results:

• It is decidable whether a given finite-turn Turing machine (resp.
finite-turn NPDA, finite-turn queue automaton) has Σ∗ as the set of
subwords. [Ibarra, IM, JALC 2017].

• For every checking stack automaton M that uses non-constant
space, then M cannot use less than linear space (space measured
over every accepting computation) [Ibarra, Jirásek, IM, Prigioniero,
IJFCS 2021].

• Recent yet to be published proof on decidability of boundedness.

48 / 52

Conclusions

• Store languages are an important but understudied concept in
automata theory.

• Store languages of a machine model can often be accepted by a
model that is less powerful.

• Characterizing the store languages of a model often enables other
algorithmic applications and proofs.

49 / 52

Open Problems

• There are still many types of one-way machines (with a decidable
emptiness problem) where we do not have a characterization of their
store languages.

• We know little about store languages of two-way machines that
accept infinite languages.

• Besides NPDA, we do not know anything about the time/space
required to construct store languages.

• Besides NPDA, we do not know anything about the descriptional
complexity of their store languages.

• These are important and fundamental questions in automata and
formal language theory, and also important for many applications.

50 / 52

Acknowledgements

• Thanks to past co-authors on this work: Oscar Ibarra, Jozef Jirásek
Jr., Luca Prigioniero, Noah Friesen, Joey Eremondi.

• Thanks to all the other current and former graduate students in my
lab.

• Thanks to the University of Saskatchewan.

• Thanks to the Natural Sciences and Engineering Research Council of
Canada (NSERC) for helping fund this work.

• I’m recruiting Master’s and PhD students to the Department of
Computer Science at the University of Saskatchewan.

51 / 52

Questions?

52 / 52

