Non-regular complexity

Szilárd Zsolt Fazekas 1

Akita University

One FLAT World Seminar April 10, 2024

¹Supported by JSPS Kakenhi Grant 23K10976 (B) (B) (B) (B) (B) E 0990

Given computational model A, model B is an extension of A if comp. steps possible in A are also possible in B, and B allows some operations not available A.

Operations available in the extensions but not in the original model are a computational resource and can be analyzed quantitatively. The used amount of this 'extra' resource can be thought of as the complexity of a system from β relative to model \mathcal{A} .

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Complexity measure

Let $C(w)$ be the computation (derivation, run of automaton) of a system M of type B for some input $w \in L(M)$:

$$
C(w): c_1 \vdash c_2 \vdash \cdots \vdash c_n.
$$

 $\mathit{notA}^{\theta}_{M}(w) = |\{i \mid c_i \vdash c_{i+1} \text{ uses an operation } \theta \text{ not available in } \mathcal{A} \}|$

$$
notA_M^{\theta}(n) = \max_{|w|=n} \{notA(w)\}
$$

For $w \notin L(M)$ and for n such that no word of length n is in $L(M)$, the measures are set to 0.

KELK KØLK VELKEN EL 1990

Non-regular complexity

Here we focus on cases when $\mathcal A$ is a model which generates/accepts regular languages.

 \blacktriangleright \mathcal{A} = regular grammars, \mathcal{B} = context-free grammars

- \blacktriangleright $\mathcal{A} = \mathsf{FA}, \mathcal{B} = \mathsf{one}$ -way jumping automata
- \triangleright $\mathcal{A} = \mathsf{FA}, \mathcal{B} =$ automata with translucent letters

Questions

- 1. Where is the boundary of regularity?
- 2. Are there systems/languages with intermediate complexity, i.e., more than minimal (constant) and less than maximal (typically linear)?

3. Is the complexity of a given system/language decidable?

 $\mathcal{A}=$ regular grammars, $\mathcal{B}=$ context-free grammars On the degrees of non-regularity and non-context-freeness [Bordihn and Mitrana, '20]

Count the number of non-regular production rules used in the derivations (degree of non-regularity).

 d nreg_G (w, D) = number of non-regular steps in derivation D of w.

$$
dnreg_G(w) = \begin{cases} \min\{dnreg_G(w, D) \mid D \text{ is a derivation of } w\} & w \in L(G) \\ 0 & w \notin L(G) \end{cases}
$$

$$
dnreg_G(n) = max{dnreg_G(w) | |w| = n}
$$

 $DNREG(f(n)) = \{L \mid L = L(G) \text{ for CFG } G \text{ with } d n reg_G(n) \in O(f(n))\}$ $\mathcal{A}=$ regular grammars, $\mathcal{B}=$ context-free grammars

- \blacktriangleright DNREG(1)=REG.
- \triangleright For any context-free grammar G and positive integer c, it is decidable whether dnreg_G(n) < c.
- ▶ Given an unambiguous context-free grammar G, one can algorithmically decide whether dnreg_G(n) $\in O(1)$.
- \triangleright Given a linear context-free grammar G, it is undecidable whether $dnreg_G(n) \in O(1)$.

KELK KØLK VELKEN EL 1990

 $\mathcal{A}=$ regular grammars, $\mathcal{B}=$ context-free grammars

 \blacktriangleright CF=DNREG(*n*).

 \blacktriangleright For every deterministic context-free grammar G with $L(G)$ non-regular, dnreg_G $(n) \in \Omega$ (n) .

► DNREG(
$$
\sqrt{n}
$$
)\DINEG(1)≠ \emptyset and
DNREG(log *n*)\DNEG(1)≠ \emptyset .

Probably DNREG(n)\DNREG(f(n)) \neq Ø, for any sublinear function $f(n)$ (language of palindromes...)

KORKAR KERKER SAGA

\mathcal{A} = DFA, \mathcal{B} = one-way jumping DFA

 $M = (Q, \Sigma, R, s, F)$, as in a (partially defined) DFA.

Elements of R are transition rules $\mathbf{p}_a \rightarrow \mathbf{q} \in R$

Configurations of M are strings in $Q\Sigma^*$.

A \circlearrowright_R DFA transition (⊢) can be :

(i) \mathbf{p} ax \Rightarrow qx, if \mathbf{p} a \rightarrow q \in R (sequential trans.) or

 (ii) pyax \circlearrowright qxy, when $y \in (\Sigma \setminus \Sigma_{\rho})^*$, pa \rightarrow q. (a jump)

KORKAR KERKER SAGA

 $L(M) = \{x \in \Sigma^* \mid \exists f \in F : sx \vdash^* f\}.$

Example

Let M be a \circlearrowright_R DFA given by

$$
M = (\{q_0, q_1, q_2\}, \{a, b, c\}, R, q_0, \{q_0\}),
$$

where R consists of the rules $\mathbf{q}_0a \to \mathbf{q}_1$, $\mathbf{q}_1b \to \mathbf{q}_2$ and $\mathbf{q}_2c \to \mathbf{q}_0$.

Accepted language is $\{w \in \{a, b, c\}^* \mid |w|_a = |w|_b = |w|_c\}$

 \mathbf{q}_0 acbcab $\vdash \mathbf{q}_1$ bcabc $\vdash \mathbf{q}_2$ cabc $\vdash \mathbf{q}_0$ abc $\vdash \mathbf{q}_1$ bc $\vdash \mathbf{q}_2$ c $\vdash \mathbf{q}_0$

KORK EXTERNE PROVIDE

Accepting power

- ▶ REG $\subseteq \bigcirc_R$ DFA.
- \blacktriangleright CF and \bigcirc_R DFA are incomparable.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

- \blacktriangleright ⊘_RDFA \subseteq CS.
- ▶ \bigcirc_R DFA \subseteq DTIME(n^2).

Figure: \bigcirc_R **DFA** A accepting $\{w \mid |w|_a = |w|_b\}.$

Sweeps:

Figure: The computation table for a^4b^4 by A.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The *jump complexity* (*sweep complexity*) of an automaton M is $jc_M(n)$ (sc_M(n)) is the maximum number of jumps (sweeps) that M makes on processing inputs $w \in L(M)$ of length n.

 $JUMP(f(n))$ (SWEEP($f(n)$)) is the class of languages accepted by \bigcirc_R DFA with $ic_M(n)$ (sc $M(n)$) in $\mathcal{O}(f(n))$.

KORKARYKERKER POLO

Jump complexity is between $O(1)$ and $O(n)$, but we do not know more in the general case.²

For jumps of limited length, we have machines with jump complexity Θ(log n).

 2 By the slightly different definition used in FMW['22](#page-12-0), [it](#page-14-0) [c](#page-12-0)[an](#page-13-0) [b](#page-14-0)[e](#page-0-0) $\mathcal{O}(n^2)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^2)$

Sweep complexity

For any \circlearrowright_R DFA $\mathcal A$ and any constant k, the set of words accepted by A in at most k sweeps is regular. [F., Yamamura, 2016]

Lemma $(F_{\cdot}, \text{Mercaș}, \text{Wu}, 2022)$

If a \mathbb{O}_R **DFA** has superconstant sweep complexity, then it has two reachable and co-reachable states p and q such that p is a-deficient, **q** is b-deficient, for some a, $b \in \Sigma$ with $a \neq b$, and pbuav \vdash^* qav \vdash^* p, for some $u, v \in \Sigma^*$.

KO KA KO KERKER KONGK

Logarithmic complexity

Sweep complexity revisited [F., Mercaș, 2023]

Figure: $L(\mathcal{B}) = \{ w \in \{a, b\}^* \mid |w|_a \equiv 0 \text{ mod } 2, |w|_b \equiv 0 \text{ mod } 2 \}.$

KORKARYKERKER POLO

 $L(\mathcal{B})$ is regular.

The sweep complexity of β is $\Theta(\log n)$.

Linear complexity

Figure: $L(C) = \{w \in \{a, b\}^* \mid |w|_a \equiv 1 \mod 2, |w|_b \equiv 1 \mod 2\}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

 $L(\mathcal{C})$ is regular.

The sweep complexity of $\mathcal C$ is $\Theta(n)$.

Non-REG language accepted with sublinear sweep complexity

KORK EXTERNE PROVIDE

The \bigcirc_R **DFA** $\mathcal D$ accepts a non-regular language.

The sweep complexity of D is $\Theta(\log n)$.

Separating complexity classes

 $\text{SWEEP}(1) \subset \text{SWEEP}(\log n)$.

Any automaton which accepts $L_{ab} = \{ w \in \{a,b\}^* \mid |w|_a = |w|_b \}$ has sweep complexity $\Theta(n)$.

If $f : \mathbb{N} \Rightarrow \mathbb{N}$ with $f(n) \in o(n)$ then SWEEP $(f(n)) \subseteq$ SWEEP (n) .

KORKARYKERKER POLO

$\mathcal{A}=$ NFA, $\mathcal{B}=$ NFA with translucent letters

Jump complexity of finite automata with translucent letters [Mitrana, Păun, Păun, Sanchez Couso, 2024]

 $M = (Q, \Sigma, R, s, F)$, as in a (partially defined) DFA.

Transition rules are $\mathbf{p}a \to \mathbf{q} \in R$, configurations are strings in $Q\Sigma^*$.

A transition can be either:

(i)
$$
\mathbf{p}ax \Rightarrow \mathbf{q}x
$$
, if $\mathbf{p}a \rightarrow \mathbf{q} \in R$ (*sequential trans.*) or

(*ii*)
$$
\mathbf{p} \times \mathbf{a} \mathbf{y} \circ \mathbf{q} \times \mathbf{y}
$$
, when $\mathbf{x} \in (\Sigma \setminus \Sigma_p)^*$, $\mathbf{p} \mathbf{a} \to \mathbf{q}$. (*a jump*)

KORKAR KERKER SAGA

Jump complexity

- \triangleright Given an NFATL M and a positive integer c, the language the language accepted by M with at most c jumps $(L(M, c))$ is regular.
- \triangleright There are NFATL with $\Omega(n)$ jump complexity accepting regular languages.

KORKARYKERKER POLO

- ▶ Any NFATL accepting $L = \{w \mid |w|_a |w|_b \in \{0,1\}\}\)$ has jump complexity $Ω(n)$, so $JCL(n) \setminus JCL(f(n)) \neq ∅$ for any sublinear function $f(n)$.
- \blacktriangleright JCL(log n) \ JCL(1) $\neq \emptyset$.

$A=$ DFA, $B=$ DFA with translucent letters

- ▶ Ongoing work with MPPC
- It looks like there is a gap between $JCL(1)$ and $JCL(n)$

 \blacktriangleright In some cases complexity is probably decidable

Overall

- \triangleright $O(1)$ complexity implies that the language generated/accepted is regular
- in some cases the hierarchy collapses to $O(1)$ and $O(n)$, but at least in the nondeterministic case there are intermediate classes
- \triangleright O(1) (and maybe O(n)) complexity is decidable for some models

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

What is next?

- \triangleright Are there machines with arbitrary (constructible) sublinear complexity $(\Theta(\log^kn)$ and $\Theta(n^{\epsilon}))$?
- \blacktriangleright Is it decidable, given a machine or language and a function $f(n)$, whether the machine/language has $\Theta(f(n))$ sweep complexity?

KORKAR KERKER SAGA

 $▶$ Investigate similar models $→$ General framework for 'non-regular' complexity

General framework

▶ Perhaps a single tape Turing machine, or a model like iterated finite transducers

 4 ロ) 4 \overline{B}) 4 \overline{B}) 4 \overline{B}) 4

 Ω

▶ Parameterise the complexity classes by number of rewrites allowed per position, per sweep, in total...

Thank you!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$F., S. Z., Mercas, R., and Wu, O. (2022).$

Complexities for jumps and sweeps.

Journal of Automata, Languages and Combinatorics, 27(1-3):131–149.

KO K K Ø K K E K K E K V K K K K K K K K K