
Non-regular complexity

Szilárd Zsolt Fazekas1

Akita University

One FLAT World Seminar
April 10, 2024

1Supported by JSPS Kakenhi Grant 23K10976

“Relative complexity”

Given computational model A, model B is an extension of A if
comp. steps possible in A are also possible in B, and B allows
some operations not available A.

Operations available in the extensions but not in the original model
are a computational resource and can be analyzed quantitatively.
The used amount of this ‘extra’ resource can be thought of as the
complexity of a system from B relative to model A.

Complexity measure

Let C (w) be the computation (derivation, run of automaton) of a
system M of type B for some input w ∈ L(M):

C (w) : c1 ⊢ c2 ⊢ · · · ⊢ cn.

notAθ
M(w) = |{i | ci ⊢ ci+1 uses an operation θ not available in A}|

notAθ
M(n) = max

|w |=n
{notA(w)}

For w /∈ L(M) and for n such that no word of length n is in L(M),
the measures are set to 0.

Non-regular complexity

Here we focus on cases when A is a model which
generates/accepts regular languages.

▶ A = regular grammars, B = context-free grammars

▶ A = FA, B = one-way jumping automata

▶ A = FA, B = automata with translucent letters

Questions

1. Where is the boundary of regularity?

2. Are there systems/languages with intermediate complexity,
i.e., more than minimal (constant) and less than maximal
(typically linear)?

3. Is the complexity of a given system/language decidable?

A= regular grammars, B = context-free grammars
On the degrees of non-regularity and non-context-freeness [Bordihn
and Mitrana, ’20]

Count the number of non-regular production rules used in the
derivations (degree of non-regularity).

dnregG (w ,D) = number of non-regular steps in derivation D of w .

dnregG (w) =

{
min{dnregG (w ,D) | D is a derivation of w} w ∈ L(G)

0 w /∈ L(G)

dnregG (n) = max{dnregG (w) | |w | = n}

DNREG (f (n)) = {L | L = L(G) for CFG G with dnregG (n) ∈ O(f (n))}

A= regular grammars, B = context-free grammars

▶ DNREG(1)=REG.

▶ For any context-free grammar G and positive integer c, it is
decidable whether dnregG (n) ≤ c .

▶ Given an unambiguous context-free grammar G, one can
algorithmically decide whether dnregG (n) ∈ O(1).

▶ Given a linear context-free grammar G , it is undecidable
whether dnregG (n) ∈ O(1).

A= regular grammars, B = context-free grammars

▶ CF=DNREG(n).

▶ For every deterministic context-free grammar G with L(G)
non-regular, dnregG (n) ∈ Ω(n).

▶ DNREG(
√
n)\DNREG(1) ̸= ∅ and

DNREG(log n)\DNREG(1) ̸= ∅.

Probably DNREG(n)\DNREG(f (n))̸= ∅, for any sublinear function
f (n) (language of palindromes...)

A= DFA, B= one-way jumping DFA

M = (Q,Σ,R, s,F), as in a (partially defined) DFA.

Elements of R are transition rules pa → q ∈ R

Configurations of M are strings in QΣ∗.

A ⟳RDFA transition (⊢) can be :

(i) pax ⇒ qx , if pa → q ∈ R (sequential trans.) or

(ii) pyax ⟳ qxy , when y ∈ (Σ \ Σp)
∗,pa → q. (a jump)

L(M) = {x ∈ Σ∗ | ∃f ∈ F : sx ⊢∗ f}.

Example

Let M be a ⟳RDFA given by

M = ({q0,q1,q2}, {a, b, c},R,q0, {q0}),

where R consists of the rules q0a → q1, q1b → q2 and q2c → q0.

Accepted language is {w ∈ {a, b, c}∗ | |w |a = |w |b = |w |c}

q0acbcab ⊢ q1bcabc ⊢ q2cabc ⊢ q0abc ⊢ q1bc ⊢ q2c ⊢ q0

q0

q2

q1
a

bc

Accepting power

▶ REG ⊊ ⟳RDFA.

▶ CF and ⟳RDFA are incomparable.

▶ ⟳RDFA ⊊ CS.

▶ ⟳RDFA ⊆ DTIME(n2).

1 2

a

b

Figure: ⟳RDFA A accepting {w | |w |a = |w |b}.

Sweeps:

position : 0 1 2 3 4 5 6 7

input a a a a b b b b
after sweep 1 ε a a a ε b b b
after sweep 2 ε ε a a ε ε b b
after sweep 3 ε ε ε a ε ε ε b
after sweep 4 ε ε ε ε ε ε ε ε

Figure: The computation table for a4b4 by A.

Sweep complexity [F. et al., 2022]

The jump complexity (sweep complexity) of an automaton M is
jcM(n) (scM(n)) is the maximum number of jumps (sweeps) that
M makes on processing inputs w ∈ L(M) of length n.

JUMP(f (n)) (SWEEP(f (n))) is the class of languages accepted
by ⟳RDFA with jcM(n) (scM(n)) in O(f (n)).

Jump complexity

Jump complexity is between O(1) and O(n), but we do not know
more in the general case.2

For jumps of limited length, we have machines with jump
complexity Θ(log n).

2By the slightly different definition used in FMW’22, it can be O(n2)

Sweep complexity

For any ⟳RDFA A and any constant k, the set of words accepted
by A in at most k sweeps is regular. [F., Yamamura, 2016]

Lemma (F., Mercaş, Wu, 2022)

If a ⟳RDFA has superconstant sweep complexity, then it has two
reachable and co-reachable states p and q such that p is
a-deficient, q is b-deficient, for some a, b ∈ Σ with a ̸= b, and
pbuav ⊢∗ qav ⊢∗ p, for some u, v ∈ Σ∗.

p

q

a

b

Logarithmic complexity

Sweep complexity revisited [F., Mercaş, 2023]

12 3a

a

b

b

Figure: L(B) = {w ∈ {a, b}∗ | |w |a ≡ 0 mod 2, |w |b ≡ 0 mod 2}.

L(B) is regular.

The sweep complexity of B is Θ(log n).

Linear complexity

A0

A1

A2

A3

B1

B3

B2

a a

bb

b

b

b

a

a

a

Figure: L(C) = {w ∈ {a, b}∗ | |w |a ≡ 1 mod 2, |w |b ≡ 1 mod 2}

L(C) is regular.

The sweep complexity of C is Θ(n).

Non-REG language accepted with sublinear sweep
complexity

1 2

3

a

bb

a

The ⟳RDFA D accepts a non-regular language.

The sweep complexity of D is Θ(log n).

Separating complexity classes

SWEEP(1) ⊊ SWEEP(log n).

Any automaton which accepts Lab = {w ∈ {a, b}∗ | |w |a = |w |b}
has sweep complexity Θ(n).

If f : N ⇒ N with f (n) ∈ o(n) then SWEEP(f (n)) ⊊ SWEEP(n).

A= NFA, B= NFA with translucent letters

Jump complexity of finite automata with translucent letters
[Mitrana, Pǎun, Pǎun, Sanchez Couso, 2024]

M = (Q,Σ,R, s,F), as in a (partially defined) DFA.

Transition rules are pa → q ∈ R, configurations are strings in QΣ∗.

A transition can be either:

(i) pax ⇒ qx , if pa → q ∈ R (sequential trans.) or

(ii) pxay ⟳ qxy , when x ∈ (Σ \ Σp)
∗,pa → q. (a jump)

Jump complexity

▶ Given an NFATL M and a positive integer c , the language the
language accepted by M with at most c jumps (L(M, c)) is
regular.

▶ There are NFATL with Ω(n) jump complexity accepting
regular languages.

▶ Any NFATL accepting L = {w | |w |a − |w |b ∈ {0, 1}} has
jump complexity Ω(n), so JCL(n) \ JCL(f (n)) ̸= ∅ for any
sublinear function f (n).

▶ JCL(log n) \ JCL(1) ̸= ∅.

A= DFA, B= DFA with translucent letters

▶ Ongoing work with MPPC

▶ It looks like there is a gap between JCL(1) and JCL(n)

▶ In some cases complexity is probably decidable

Overall

▶ O(1) complexity implies that the language
generated/accepted is regular

▶ in some cases the hierarchy collapses to O(1) and O(n), but
at least in the nondeterministic case there are intermediate
classes

▶ O(1) (and maybe O(n)) complexity is decidable for some
models

What is next?

▶ Are there machines with arbitrary (constructible) sublinear
complexity (Θ(logk n) and Θ(nϵ))?

▶ Is it decidable, given a machine or language and a function
f (n), whether the machine/language has Θ(f (n)) sweep
complexity?

▶ Investigate similar models → General framework for
‘non-regular’ complexity

General framework

▶ Perhaps a single tape Turing machine, or a model like iterated
finite transducers

▶ Parameterise the complexity classes by number of rewrites
allowed per position, per sweep, in total...

Thank you!

F., S. Z., Mercaş, R., and Wu, O. (2022).
Complexities for jumps and sweeps.
Journal of Automata, Languages and Combinatorics, 27(1-3):131–149.

