Non-regular complexity

Szilárd Zsolt Fazekas¹

Akita University

One FLAT World Seminar April 10, 2024

¹Supported by JSPS Kakenhi Grant 23K10976 (\Box) (\Box

Given computational model \mathcal{A} , model \mathcal{B} is an extension of \mathcal{A} if comp. steps possible in \mathcal{A} are also possible in \mathcal{B} , and \mathcal{B} allows some operations not available \mathcal{A} .

Operations available in the extensions but not in the original model are a computational resource and can be analyzed quantitatively. The used amount of this 'extra' resource can be thought of as the complexity of a system from \mathcal{B} relative to model \mathcal{A} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity measure

Let C(w) be the computation (derivation, run of automaton) of a system M of type \mathcal{B} for some input $w \in L(M)$:

$$C(w): c_1 \vdash c_2 \vdash \cdots \vdash c_n.$$

 $notA^{\theta}_{M}(w) = |\{i \mid c_i \vdash c_{i+1} \text{ uses an operation } \theta \text{ not available in } \mathcal{A}\}|$

$$notA^{ heta}_M(n) = \max_{|w|=n} \{notA(w)\}$$

For $w \notin L(M)$ and for *n* such that no word of length *n* is in L(M), the measures are set to 0.

Here we focus on cases when \mathcal{A} is a model which generates/accepts regular languages.

• A = regular grammars, B = context-free grammars

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ A = FA, B = one-way jumping automata
- ▶ A = FA, B = automata with translucent letters

Questions

- 1. Where is the boundary of regularity?
- 2. Are there systems/languages with intermediate complexity, i.e., more than minimal (constant) and less than maximal (typically linear)?

3. Is the complexity of a given system/language decidable?

 \mathcal{A} = regular grammars, \mathcal{B} = context-free grammars On the degrees of non-regularity and non-context-freeness [Bordihn and Mitrana, '20]

Count the number of non-regular production rules used in the derivations (degree of non-regularity).

 $dnreg_G(w, D) =$ number of non-regular steps in derivation D of w.

$$dnreg_G(w) = \begin{cases} \min\{dnreg_G(w, D) \mid D \text{ is a derivation of } w\} & w \in L(G) \\ 0 & w \notin L(G) \end{cases}$$

$$dnreg_G(n) = \max\{dnreg_G(w) \mid |w| = n\}$$

 $DNREG(f(n)) = \{L \mid L = L(G) \text{ for CFG } G \text{ with } dnreg_G(n) \in O(f(n))\}$

 \mathcal{A} = regular grammars, \mathcal{B} = context-free grammars

DNREG(1)=REG.

- For any context-free grammar G and positive integer c, it is decidable whether dnreg_G(n) ≤ c.
- ▶ Given an unambiguous context-free grammar G, one can algorithmically decide whether $dnreg_G(n) \in O(1)$.
- Given a linear context-free grammar G, it is undecidable whether $dnreg_G(n) \in O(1)$.

 \mathcal{A} = regular grammars, \mathcal{B} = context-free grammars

► CF=DNREG(*n*).

For every deterministic context-free grammar G with L(G) non-regular, $dnreg_G(n) \in \Omega(n)$.

▶ DNREG
$$(\sqrt{n})$$
\DNREG $(1) \neq \emptyset$ and
DNREG $(\log n)$ \DNREG $(1) \neq \emptyset$.

Probably DNREG(n)\DNREG(f(n)) $\neq \emptyset$, for any sublinear function f(n) (language of palindromes...)

 \mathcal{A} = DFA, \mathcal{B} = one-way jumping DFA

 $M = (Q, \Sigma, R, s, F)$, as in a (partially defined) DFA.

Elements of *R* are transition rules $\mathbf{p}a \rightarrow \mathbf{q} \in R$

Configurations of *M* are strings in $Q\Sigma^*$.

A \bigcirc_R **DFA** transition (\vdash) can be :

(*i*) $\mathbf{p}ax \Rightarrow \mathbf{q}x$, if $\mathbf{p}a \rightarrow \mathbf{q} \in R$ (sequential trans.) or

(*ii*) **p**yax \circlearrowright **q**xy, when $y \in (\Sigma \setminus \Sigma_{\rho})^*$, **p** $a \rightarrow$ **q**. (a jump)

 $L(M) = \{ x \in \Sigma^* \mid \exists \mathbf{f} \in F : \mathbf{s}x \vdash^* \mathbf{f} \}.$

Example

Let M be a $\bigcirc_R \mathsf{DFA}$ given by

$$M = (\{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}, \{a, b, c\}, R, \mathbf{q}_0, \{\mathbf{q}_0\}),$$

where R consists of the rules $\mathbf{q}_0 a \rightarrow \mathbf{q}_1$, $\mathbf{q}_1 b \rightarrow \mathbf{q}_2$ and $\mathbf{q}_2 c \rightarrow \mathbf{q}_0$.

Accepted language is
$$\{w \in \{a, b, c\}^* \mid |w|_a = |w|_b = |w|_c\}$$

 $\mathbf{q}_0 acbcab \vdash \mathbf{q}_1 bcabc \vdash \mathbf{q}_2 cabc \vdash \mathbf{q}_0 abc \vdash \mathbf{q}_1 bc \vdash \mathbf{q}_2 c \vdash \mathbf{q}_0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Accepting power

- **REG** $\subsetneq \circlearrowright_R \mathbf{DFA}$.
- **CF** and $\bigcirc_R \mathbf{DFA}$ are incomparable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- \triangleright $\bigcirc_R \mathsf{DFA} \subsetneq \mathsf{CS}.$
- ▶ \circlearrowright_R **DFA** \subseteq DTIME (n^2) .

Figure: $\circlearrowright_R \mathbf{DFA} \ \mathcal{A}$ accepting $\{w \mid |w|_a = |w|_b\}$.

Sweeps:

position :	0	1	2	3	4	5	6	7
input	а	а	а	а	b	b	b	b
after sweep 1	ε	а	а	а	ε	b	b	b
after sweep 2	ε	ε	а	а	ε	ε	b	b
after sweep 3	ε	ε	ε	а	ε	ε	ε	b
after sweep 4	ε	ε	ε	ε	ε	ε	ε	ε

Figure: The computation table for a^4b^4 by A.

The jump complexity (sweep complexity) of an automaton M is $jc_M(n)$ ($sc_M(n)$) is the maximum number of jumps (sweeps) that M makes on processing inputs $w \in L(M)$ of length n.

JUMP(f(n)) (SWEEP(f(n))) is the class of languages accepted by \bigcirc_R DFA with $jc_M(n)$ ($sc_M(n)$) in $\mathcal{O}(f(n))$.

- Jump complexity is between O(1) and O(n), but we do not know more in the general case.²
- For jumps of limited length, we have machines with jump complexity $\Theta(\log n)$.

²By the slightly different definition used in FMW'22_P it can be $O(n^2) = -9 \propto C^2$

Sweep complexity

For any $\bigcirc_R \mathbf{DFA} \ \mathcal{A}$ and any constant k, the set of words accepted by \mathcal{A} in at most k sweeps is regular. [F., Yamamura, 2016]

Lemma (F., Mercaș, Wu, 2022)

If a $\bigcirc_R \mathbf{DFA}$ has superconstant sweep complexity, then it has two reachable and co-reachable states \mathbf{p} and \mathbf{q} such that \mathbf{p} is a-deficient, \mathbf{q} is b-deficient, for some $a, b \in \Sigma$ with $a \neq b$, and \mathbf{p} buav $\vdash^* \mathbf{q}$ av $\vdash^* \mathbf{p}$, for some $u, v \in \Sigma^*$.

- 日本 本語 本 本 田 本 王 本 田 本

Logarithmic complexity

Sweep complexity revisited [F., Mercaş, 2023]

Figure: $L(\mathcal{B}) = \{w \in \{a, b\}^* \mid |w|_a \equiv 0 \mod 2, |w|_b \equiv 0 \mod 2\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $L(\mathcal{B})$ is regular.

The sweep complexity of \mathcal{B} is $\Theta(\log n)$.

Linear complexity

Figure: $L(\mathcal{C}) = \{w \in \{a, b\}^* \mid |w|_a \equiv 1 \mod 2, |w|_b \equiv 1 \mod 2\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $L(\mathcal{C})$ is regular.

The sweep complexity of C is $\Theta(n)$.

Non-REG language accepted with sublinear sweep complexity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The $\bigcirc_R \mathbf{DFA} \mathcal{D}$ accepts a non-regular language. The sweep complexity of \mathcal{D} is $\Theta(\log n)$. Separating complexity classes

 $SWEEP(1) \subsetneq SWEEP(\log n).$

Any automaton which accepts $L_{ab} = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$ has sweep complexity $\Theta(n)$.

If $f : \mathbb{N} \Rightarrow \mathbb{N}$ with $f(n) \in o(n)$ then $\mathrm{SWEEP}(f(n)) \subsetneq \mathrm{SWEEP}(n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

\mathcal{A} = NFA, \mathcal{B} = NFA with translucent letters

Jump complexity of finite automata with translucent letters [Mitrana, Păun, Păun, Sanchez Couso, 2024]

 $M = (Q, \Sigma, R, s, F)$, as in a (partially defined) DFA.

Transition rules are $\mathbf{p}a \rightarrow \mathbf{q} \in R$, configurations are strings in $Q\Sigma^*$.

A transition can be either:

(*i*) $\mathbf{p}ax \Rightarrow \mathbf{q}x$, if $\mathbf{p}a \rightarrow \mathbf{q} \in R$ (sequential trans.) or

(*ii*)
$$\mathbf{p}xay \circlearrowright \mathbf{q}xy$$
, when $x \in (\Sigma \setminus \Sigma_p)^*, \mathbf{p}a \to \mathbf{q}$. (*a jump*)

Jump complexity

- ► Given an NFATL *M* and a positive integer *c*, the language the language accepted by *M* with at most *c* jumps (*L*(*M*, *c*)) is regular.
- There are NFATL with Ω(n) jump complexity accepting regular languages.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Any NFATL accepting L = {w | |w|_a − |w|_b ∈ {0,1}} has jump complexity Ω(n), so JCL(n) \ JCL(f(n)) ≠ Ø for any sublinear function f(n).
- ► $JCL(\log n) \setminus JCL(1) \neq \emptyset$.

$\mathcal{A}=$ DFA, $\mathcal{B}=$ DFA with translucent letters

- Ongoing work with MPPC
- lt looks like there is a gap between JCL(1) and JCL(n)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In some cases complexity is probably decidable

- O(1) complexity implies that the language generated/accepted is regular
- ▶ in some cases the hierarchy collapses to O(1) and O(n), but at least in the nondeterministic case there are intermediate classes
- O(1) (and maybe O(n)) complexity is decidable for some models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is next?

- Are there machines with arbitrary (constructible) sublinear complexity (Θ(log^k n) and Θ(n^ε))?
- Is it decidable, given a machine or language and a function f(n), whether the machine/language has Θ(f(n)) sweep complexity?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Investigate similar models → General framework for 'non-regular' complexity

General framework

 Perhaps a single tape Turing machine, or a model like iterated finite transducers

・ロト ・ 同ト ・ ヨト ・ ヨト

Parameterise the complexity classes by number of rewrites allowed per position, per sweep, in total...

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

F., S. Z., Mercaş, R., and Wu, O. (2022).

Complexities for jumps and sweeps.

Journal of Automata, Languages and Combinatorics, 27(1-3):131–149.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ