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▶ For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

▶ This problem can be solved in polynomial time, e.g. by using
Moore’s algorithm for automata minimization.

▶ However, if the language P is described to you by way of a
non-deterministic finite automaton (NFA), finding the
smallest NFA for computing P is PSPACE-hard
(Jiang&Ravikumar, 1993).

▶ So this problem can be sometimes easy, sometimes hard, and
there are many cases where the complexity of the above
problem is unknown.
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▶ The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

▶ The above problem does not necessarily become harder as the
model M becomes more powerful. Soon I will give examples
of computational models M1 and M2, where M2 is more
powerful than M1, but finding optimal algorithms is possible
for M2 but (e.g.) NP-hard for M1.

▶ The answer also depends on the kind of problems we wish to
understand. Soon I will give examples where we can answer
the above question efficiently, e.g., for total functions, but the
meta-problem becomes NP-hard for partial functions.
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Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ So we have a fundamental theoretical question, and the
answer to it depends on:
▶ The computational model M being looked at.
▶ The measure of complexity being used (what is “best”).
▶ The kind of problem P for which we wish to find good

algorithms.
▶ How the problem P is described to us.
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DNF log-approx size total f truth-table in P Masek ’79
DNF o(log)-approx total f truth-table NP-complete AHMPS,KS’08
DNF size total f DNF σp

2 -complete Umans’01
Det-CC depth partial f matrix NP-hard LY’94
Det-CC depth total f matrix NP-hard HIL’24
PP-CC depth total f matrix in P LS’09



Our results

We understand the complexity of decision-tree complexity.



Decision trees
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Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

▶ In our setting, we assume that we are given the full
description of a total function f : {0, 1}n → {0, 1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. I.e.:
▶ Our model is decision-trees.
▶ Our complexity measure is decision-tree depth (also known as

query complexity).
▶ The given computational problem is a total Boolean function f ,
▶ which is either given as a truth-table, or as a circuit (we wish

to understand both scenarios).
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Theorem
The problem of computing the query complexity of f , when given
the truth-table of f , is NC1-hard, and it can be computed by
circuits of depth O(log n log log n).

Theorem
The problem of computing the query complexity of f , when given
a Boolean circuit for computing f , is PSPACE-complete.

In this talk I will focus on the second result.
The first result is proven by the same technique.
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▶ We are given as input a Boolean circuit C over n inputs
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Our main result is that circuit-DT is PSPACE-complete. Let us
start with the upper-bound:

Theorem
circuit-DT ∈ PSPACE.
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The key difficulty: circuit-DT vs TQBF

(def. of TQBF, ∃y1∀x1 . . . , TQBF as a two-player game vs circuit-DT as a two-player

game)
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Theorem
TQBF ≤p circuit-DT, hence circuit-DT is PSPACE-complete.

▶ I will not prove the full theorem, but I will prove an important
auxiliary lemma.

▶ This will give some idea of how one forces a circuit-DT game
to behave like a TQBF game.
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▶ What is the decision-tree depth of Fn?

▶ How might Alice and Bob play the circuit-DT game on Fn?

▶ Remember, in the circuit-DT game, Alice chooses a variable,
and Bob sets that variable to some value.

▶ Bob’s goal is to make the game last as long as possible before
the function becomes constant.
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to set y1 to 1 or 0, as she desires.
▶ This is exactly the power that Alice has in the TQBF game.
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▶ Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y1 and y ′1 in any
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▶ Let me briefly show you the final construction.
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For the full text:
https://eccc.weizmann.ac.il/report/2024/034/

Thank you!










