The hardness of decision-tree complexity

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

FLAT Seminar

Bruno Loff University of Lisbon

.

Suppose you are given a description of a computational problem P

and you wish to find the "best" algorithm for solving P

in a certain computational model M

What is the computational complexity of this "meta" task?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

For example, a regular language P is given to you by way of a DFA D for deciding it, and you wish to find a smallest-possible DFA for deciding the same language. So the description D is a DFA, the model M is DFAs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- For example, a regular language P is given to you by way of a DFA D for deciding it, and you wish to find a smallest-possible DFA for deciding the same language. So the description D is a DFA, the model M is DFAs.
- This problem can be solved in polynomial time, e.g. by using Moore's algorithm for automata minimization.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- For example, a regular language P is given to you by way of a DFA D for deciding it, and you wish to find a smallest-possible DFA for deciding the same language. So the description D is a DFA, the model M is DFAs.
- This problem can be solved in polynomial time, e.g. by using Moore's algorithm for automata minimization.
- However, if the language P is described to you by way of a non-deterministic finite automaton (NFA), finding the smallest NFA for computing P is PSPACE-hard (Jiang&Ravikumar, 1993).

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- For example, a regular language P is given to you by way of a DFA D for deciding it, and you wish to find a smallest-possible DFA for deciding the same language. So the description D is a DFA, the model M is DFAs.
- This problem can be solved in polynomial time, e.g. by using Moore's algorithm for automata minimization.
- However, if the language P is described to you by way of a non-deterministic finite automaton (NFA), finding the smallest NFA for computing P is PSPACE-hard (Jiang&Ravikumar, 1993).
- So this problem can be sometimes easy, sometimes hard, and there are many cases where the complexity of the above problem is unknown.

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

The difficulty of the above problem depends not only on the model. Even for the same model *M*, the difficulty of the above problem will depend on how *P* is described.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- The difficulty of the above problem depends not only on the model. Even for the same model *M*, the difficulty of the above problem will depend on how *P* is described.
- The above problem does not necessarily become harder as the model *M* becomes more powerful. Soon I will give examples of computational models *M*₁ and *M*₂, where *M*₂ is more powerful than *M*₁, but finding optimal algorithms is possible for *M*₂ but (e.g.) NP-hard for *M*₁.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- The difficulty of the above problem depends not only on the model. Even for the same model *M*, the difficulty of the above problem will depend on how *P* is described.
- The above problem does not necessarily become harder as the model *M* becomes more powerful. Soon I will give examples of computational models *M*₁ and *M*₂, where *M*₂ is more powerful than *M*₁, but finding optimal algorithms is possible for *M*₂ but (e.g.) NP-hard for *M*₁.
- The answer also depends on the kind of problems we wish to understand. Soon I will give examples where we can answer the above question efficiently, e.g., for total functions, but the meta-problem becomes NP-hard for partial functions.

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

So we have a fundamental theoretical question, and the answer to it depends on:

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

So we have a fundamental theoretical question, and the answer to it depends on:

The computational model M being looked at.

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- So we have a fundamental theoretical question, and the answer to it depends on:
 - The computational model M being looked at.
 - The measure of complexity being used (what is "best").

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- So we have a fundamental theoretical question, and the answer to it depends on:
 - The computational model M being looked at.
 - The measure of complexity being used (what is "best").
 - The kind of problem P for which we wish to find good algorithms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose you are given a description D of a computational problem P and you wish to find the "best" algorithm for solving P in a certain computational model M

- So we have a fundamental theoretical question, and the answer to it depends on:
 - The computational model M being looked at.
 - The measure of complexity being used (what is "best").
 - The kind of problem P for which we wish to find good algorithms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

How the problem P is described to us.

Model Measure Problem Description Hardness reference

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total <i>f</i>	truth-table	NP-complete	Masek '79

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total f	truth-table	NP-complete	Masek '79
DNF	log-approx size	total <i>f</i>	truth-table	in P	Masek '79

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total <i>f</i>	truth-table	NP-complete	Masek '79
DNF	log-approx size	total <i>f</i>	truth-table	in P	Masek '79
DNF	o(log)-approx	total <i>f</i>	truth-table	NP-complete	AHMPS,KS'08

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total <i>f</i>	truth-table	NP-complete	Masek '79
DNF	log-approx size	total <i>f</i>	truth-table	in P	Masek '79
DNF	o(log)-approx	total <i>f</i>	truth-table	NP-complete	AHMPS,KS'08
DNF	size	total <i>f</i>	DNF	σ_2^p -complete	Umans'01

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total <i>f</i>	truth-table	NP-complete	Masek '79
DNF	log-approx size	total <i>f</i>	truth-table	in P	Masek '79
DNF	o(log)-approx	total <i>f</i>	truth-table	NP-complete	AHMPS,KS'08
DNF	size	total <i>f</i>	DNF	σ_2^p -complete	Umans'01
Det-CC	depth	partial <i>f</i>	matrix	NP-hard	LY'94

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total <i>f</i>	truth-table	NP-complete	Masek '79
DNF	log-approx size	total <i>f</i>	truth-table	in P	Masek '79
DNF	o(log)-approx	total <i>f</i>	truth-table	NP-complete	AHMPS,KS'08
DNF	size	total <i>f</i>	DNF	σ_2^p -complete	Umans'01
Det-CC	depth	partial <i>f</i>	matrix	_ NP-hard	LY'94
Det-CC	depth	total <i>f</i>	matrix	NP-hard	HIL'24
DNF DNF DNF Det-CC Det-CC	log-approx size o(log)-approx size depth depth	total <i>f</i> total <i>f</i> total <i>f</i> partial <i>f</i> total <i>f</i>	truth-table truth-table DNF matrix matrix	in P NP-complete σ_2^p -complete NP-hard NP-hard	Masek '79 AHMPS,KS' Umans'01 LY'94 HIL'24

Model	Measure	Problem	Description	Hardness	reference
DFA	size	language	DFA	in P	Moore '53
NFA	size	language	NFA	PSPACE-complete	JR'93
DNF	size	total <i>f</i>	truth-table	NP-complete	Masek '79
DNF	log-approx size	total <i>f</i>	truth-table	in P	Masek '79
DNF	o(log)-approx	total <i>f</i>	truth-table	NP-complete	AHMPS,KS'08
DNF	size	total <i>f</i>	DNF	σ_2^p -complete	Umans'01
Det-CC	depth	partial <i>f</i>	matrix	NP-hard	LY'94
Det-CC	depth	total <i>f</i>	matrix	NP-hard	HIL'24
PP-CC	depth	total <i>f</i>	matrix	in P	LS'09

Our results

We understand the complexity of decision-tree complexity.

Decision trees

(explain what a decision-tree is)

input Nn , ... , Nn a decision-tree con protes f (ng - . - nn) out put f if, for every leaf, $N_i = 0$ $N_i = 1$ f (n) is the same for λ₇=0 (μ₊:1 every in put that would follow the path free noot to that leaf f=0 f=1

Previous results: the learning problem

(data space, queries, access to samples (x, f(x)), the goal is to produce a classifier)

Model	Measure	Problem	Description	Hardness
Det-DTs	depth	total <i>f</i>	circuit	?
Det-DTs	depth	total <i>f</i>	truth-table	?

In our setting, we assume that we are given the *full* description of a total function f : {0,1}ⁿ → {0,1}, either as a truth-table, or succinctly as a Boolean circuit, and we wish to find a decision-tree for computing f that makes as few queries as possible. I.e.:

Model	Measure	Problem	Description	Hardness
Det-DTs	depth	total <i>f</i>	circuit	?
Det-DTs	depth	total <i>f</i>	truth-table	?

In our setting, we assume that we are given the *full* description of a total function f : {0,1}ⁿ → {0,1}, either as a truth-table, or succinctly as a Boolean circuit, and we wish to find a decision-tree for computing f that makes as few queries as possible. I.e.:

A D N A 目 N A E N A E N A B N A C N

Our model is decision-trees.

Model	Measure	Problem	Description	Hardness
Det-DTs	depth	total <i>f</i>	circuit	?
Det-DTs	depth	total <i>f</i>	truth-table	?

- In our setting, we assume that we are given the *full* description of a total function f : {0,1}ⁿ → {0,1}, either as a truth-table, or succinctly as a Boolean circuit, and we wish to find a decision-tree for computing f that makes as few queries as possible. I.e.:
 - Our model is decision-trees.
 - Our complexity measure is decision-tree depth (also known as query complexity).

Model	Measure	Problem	Description	Hardness
Det-DTs	depth	total <i>f</i>	circuit	?
Det-DTs	depth	total <i>f</i>	truth-table	?

- In our setting, we assume that we are given the *full* description of a total function f : {0,1}ⁿ → {0,1}, either as a truth-table, or succinctly as a Boolean circuit, and we wish to find a decision-tree for computing f that makes as few queries as possible. I.e.:
 - Our model is decision-trees.
 - Our complexity measure is decision-tree depth (also known as query complexity).
 - The given computational problem is a total Boolean function f,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Model	Measure	Problem	Description	Hardness
Det-DTs	depth	total <i>f</i>	circuit	?
Det-DTs	depth	total <i>f</i>	truth-table	?

- In our setting, we assume that we are given the *full* description of a total function f : {0,1}ⁿ → {0,1}, either as a truth-table, or succinctly as a Boolean circuit, and we wish to find a decision-tree for computing f that makes as few queries as possible. I.e.:
 - Our model is decision-trees.
 - Our complexity measure is decision-tree depth (also known as query complexity).
 - The given computational problem is a total Boolean function f,
 - which is either given as a truth-table, or as a circuit (we wish to understand both scenarios).

Our results

Theorem

The problem of computing the query complexity of f, when given the truth-table of f, is NC₁-hard, and it can be computed by circuits of depth $O(\log n \log \log n)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our results

Theorem

The problem of computing the query complexity of f, when given the truth-table of f, is NC₁-hard, and it can be computed by circuits of depth $O(\log n \log \log n)$.

Theorem

The problem of computing the query complexity of *f*, when given a Boolean circuit for computing *f*, is PSPACE-complete.
Our results

Theorem

The problem of computing the query complexity of f, when given the truth-table of f, is NC₁-hard, and it can be computed by circuits of depth $O(\log n \log \log n)$.

Theorem

The problem of computing the query complexity of f, when given a Boolean circuit for computing f, is PSPACE-complete.

In this talk I will focus on the second result.

Our results

Theorem

The problem of computing the query complexity of f, when given the truth-table of f, is NC₁-hard, and it can be computed by circuits of depth $O(\log n \log \log n)$.

Theorem

The problem of computing the query complexity of f, when given a Boolean circuit for computing f, is PSPACE-complete.

> In this talk I will focus on the second result. The first result is proven by the same technique.

Definition (formal definition of the meta-problem) The circuit-DT problem is as follows:

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

• We are given as input a Boolean circuit *C* over *n* inputs x_1, \ldots, x_n , computing some function $f : \{0, 1\}^n \to \{0, 1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

- We are given as input a Boolean circuit *C* over *n* inputs x_1, \ldots, x_n , computing some function $f : \{0, 1\}^n \to \{0, 1\}$.
- We wish to output a decision tree for *f* of minimal depth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

- We are given as input a Boolean circuit *C* over *n* inputs x_1, \ldots, x_n , computing some function $f : \{0, 1\}^n \to \{0, 1\}$.
- We wish to output a decision tree for *f* of minimal depth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our main result is that circuit-DT is PSPACE-complete.

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

- We are given as input a Boolean circuit *C* over *n* inputs x_1, \ldots, x_n , computing some function $f : \{0, 1\}^n \to \{0, 1\}$.
- ▶ We wish to output a decision tree for *f* of minimal depth.

Our main result is that circuit-DT is PSPACE-complete. Let us start with the upper-bound:

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

- We are given as input a Boolean circuit *C* over *n* inputs x_1, \ldots, x_n , computing some function $f : \{0, 1\}^n \to \{0, 1\}$.
- ▶ We wish to output a decision tree for *f* of minimal depth.

Our main result is that circuit-DT is PSPACE-complete. Let us start with the upper-bound:

Theorem circuit-DT \in PSPACE.

Theorem circuit-DT \in PSPACE.

 $(DT(f) \le 0 \text{ iff } f \text{ is constant, how about } DT(f) \le k?)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Theorem circuit-DT \in PSPACE.

 $(\mathsf{DT}(f) \leq 0 \text{ iff } f \text{ is constant, how about } \mathsf{DT}(f) \leq k?)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The key difficulty: circuit-DT vs TQBF

(def. of TQBF, $\exists y_1 \forall x_1 \dots$, TQBF as a two-player game vs circuit-DT as a two-player game)

Theorem TQBF \leq_p circuit-DT, hence circuit-DT is PSPACE-complete.

Theorem

TQBF \leq_p circuit-DT, hence circuit-DT is PSPACE-complete.

I will not prove the full theorem, but I will prove an important auxiliary lemma.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem

TQBF \leq_p circuit-DT, hence circuit-DT is PSPACE-complete.

- I will not prove the full theorem, but I will prove an important auxiliary lemma.
- This will give some idea of how one forces a circuit-DT game to behave like a TQBF game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ふして 山田 ふぼやえばや 山下

$$F_n(y_1, y_1', x_1, x_1', \ldots, y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

where:

$$\begin{aligned}
\hat{f_i} &= y_i \land y'_i \\
g_i &= \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\
x'_i & \text{otherwise.}
\end{aligned}$$

$$F_n(y_1, y_1', x_1, x_1', \ldots, y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n$$

where:

$$f_i = y_i \wedge y'_i$$

 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

So g_i depends on the variables $y_1, y'_1, x_1, x'_1, \dots, y_i, y'_i, x_i, x'_i$.

$$F_n(y_1, y_1', x_1, x_1', \ldots, y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n$$

where:

$$f_i = y_i \wedge y'_i$$

 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

So g_i depends on the variables y₁, y'₁, x₁, x'₁, ... y_i, y'_i, x_i, x'_i.
What is the decision-tree depth of F_n?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$F_n(y_1, y_1', x_1, x_1', \ldots, y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n$$

where:

$$f_i = y_i \wedge y'_i$$

 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- So g_i depends on the variables $y_1, y'_1, x_1, x'_1, \dots, y_i, y'_i, x_i, x'_i$.
- What is the decision-tree depth of F_n?
- How might Alice and Bob play the circuit-DT game on F_n?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$F_n(y_1, y_1', x_1, x_1', \ldots, y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

where:

$$f_i = y_i \wedge y'_i$$

 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- So g_i depends on the variables $y_1, y'_1, x_1, x'_1, \dots, y_i, y'_i, x_i, x'_i$.
- What is the decision-tree depth of F_n?
- How might Alice and Bob play the circuit-DT game on F_n?
- Remember, in the circuit-DT game, Alice chooses a variable, and Bob sets that variable to some value.

$$F_n(y_1, y_1', x_1, x_1', \ldots, y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

where:

$$f_i = y_i \wedge y'_i$$

 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- So g_i depends on the variables $y_1, y'_1, x_1, x'_1, \dots, y_i, y'_i, x_i, x'_i$.
- What is the decision-tree depth of F_n?
- How might Alice and Bob play the circuit-DT game on F_n?
- Remember, in the circuit-DT game, Alice chooses a variable, and Bob sets that variable to some value.
- Bob's goal is to make the game last as long as possible before the function becomes constant.

$$F_n(y_1, y'_1, x_1, x'_1, \dots y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

Suppose Alice chooses either y_1 or y'_1 .

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = \bigvee_{i_i \land y'_i} g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$$

Suppose Alice chooses either y₁ or y'₁.
 If Bob sets the chosen y variable to *X*, then there is no need to check the other variable to know that f₁ = 0.

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- Suppose Alice chooses either y_1 or y'_1 .
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- Suppose Alice chooses either y_1 or y'_1 .
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This forces Bob to set the chosen variable to 1.

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- Suppose Alice chooses either y_1 or y'_1 .
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.

- This forces Bob to set the chosen variable to 1.
- ▶ So *f*₁ is not yet fixed.

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- ► Suppose Alice chooses either y₁ or y'₁.
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.
- This forces Bob to set the chosen variable to 1.
- So f₁ is not yet fixed. Alice then asks about the other variable.

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- Suppose Alice chooses either y_1 or y'_1 .
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.
- This forces Bob to set the chosen variable to 1.
- So f₁ is not yet fixed. Alice then asks about the other variable.
- By some other part of the construction which I will soon sketch, Bob will be forced to answer 0 to the second query.

$$F_n(y_1, y_1', x_1, x_1', \ldots y_n, y_n', x_n, x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- ► Suppose Alice chooses either y₁ or y'₁.
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.
- This forces Bob to set the chosen variable to 1.
- So f₁ is not yet fixed. Alice then asks about the other variable.
- By some other part of the construction which I will soon sketch, Bob will be forced to answer 0 to the second query.
- So by asking variables in the right order, Alice can force Bob to set y₁ to 1 or 0, as she desires.

$$F_n(y_1,y_1',x_1,x_1',\ldots,y_n,y_n',x_n,x_n') := f_1 \oplus g_1 \oplus \ldots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i$$
 $g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \ldots \oplus g_{i-1} \oplus f_i = 1 \\ x'_i & \text{otherwise.} \end{cases}$

- ► Suppose Alice chooses either y₁ or y'₁.
- If Bob sets the chosen y variable to 1, then there is no need to check the other variable to know that f₁ = 0. So Alice didn't need to ask about the other y variable, and she has saved one query.
- This forces Bob to set the chosen variable to 1.
- So f₁ is not yet fixed. Alice then asks about the other variable.
- By some other part of the construction which I will soon sketch, Bob will be forced to answer 0 to the second query.
- So by asking variables in the right order, Alice can force Bob to set y₁ to 1 or 0, as she desires.
- This is exactly the power that Alice has in the TQBF game.

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

• But why should Alice be forced to ask about y_1 and y'_1 , at all.

・ロト・(型ト・(型ト・(型ト))

$$F_n(y_1, y'_1, x_1, x'_1, \dots y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

But why should Alice be forced to ask about y₁ and y'₁, at all.
Maybe she will do something else, something crazy.

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

- But why should Alice be forced to ask about y₁ and y'₁, at all.
 Maybe she will do something else, something crazy.
- However, if she did not ask about y₁ and y'₁, she does not know the value of f₁, and so she does not know which variable x₁ or x'₁ is relevant for g₁.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

- But why should Alice be forced to ask about y₁ and y'₁, at all.
 Maybe she will do something else, something crazy.
- However, if she did not ask about y₁ and y'₁, she does not know the value of f₁, and so she does not know which variable x₁ or x'₁ is relevant for g₁. So she must ask both.

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

- But why should Alice be forced to ask about y₁ and y'₁, at all.
 Maybe she will do something else, something crazy.
- However, if she did not ask about y₁ and y'₁, she does not know the value of f₁, and so she does not know which variable x₁ or x'₁ is relevant for g₁. So she must ask both.
- Using this kind of reasoning, it can be shown that an optimal Alice playing the DT-game must first ask y₁ and y'₁ in any order, and then the relevant x (x₁ or x'₁),

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

- But why should Alice be forced to ask about y₁ and y'₁, at all.
 Maybe she will do something else, something crazy.
- However, if she did not ask about y₁ and y'₁, she does not know the value of f₁, and so she does not know which variable x₁ or x'₁ is relevant for g₁. So she must ask both.
- Using this kind of reasoning, it can be shown that an optimal Alice playing the DT-game must first ask y₁ and y'₁ in any order, and then the relevant x (x₁ or x'₁),
- This kind of construction, with several more non-obvious tricks, eventually allows us to construct a DT-game where all optimal strategies of Alice and Bob behave like optimal strategies of a given TQBF instance.

$$F_n(y_1, y'_1, x_1, x'_1, \dots, y_n, y'_n, x_n, x'_n) := f_1 \oplus g_1 \oplus \dots \oplus f_n \oplus g_n,$$

$$f_i = y_i \wedge y'_i \qquad g_i = \begin{cases} x_i & \text{if } f_1 \oplus g_1 \oplus \dots \oplus g_{i-1} \oplus f_i = 1\\ x'_i & \text{otherwise.} \end{cases}$$

- But why should Alice be forced to ask about y₁ and y'₁, at all.
 Maybe she will do something else, something crazy.
- However, if she did not ask about y₁ and y'₁, she does not know the value of f₁, and so she does not know which variable x₁ or x'₁ is relevant for g₁. So she must ask both.
- Using this kind of reasoning, it can be shown that an optimal Alice playing the DT-game must first ask y₁ and y'₁ in any order, and then the relevant x (x₁ or x'₁),
- This kind of construction, with several more non-obvious tricks, eventually allows us to construct a DT-game where all optimal strategies of Alice and Bob behave like optimal strategies of a given TQBF instance.
- Let me briefly show you the final construction.

The fundamental meta-complexity problem — how hard is it to find an optimal (or near-optimal) algorithm? is wide open in many setting, including many computational models on which we have a good chance at solving the problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The fundamental meta-complexity problem how hard is it to find an optimal (or near-optimal) algorithm? is wide open in many setting, including many computational models on which we have a good chance at solving the problem.
- E.g. size of deterministic decision trees, size/depth of randomized decision trees, parity decision-trees, approximating communication complexity of total functions, randomized communication complexity, ...

- The fundamental meta-complexity problem how hard is it to find an optimal (or near-optimal) algorithm? is wide open in many setting, including many computational models on which we have a good chance at solving the problem.
- E.g. size of deterministic decision trees, size/depth of randomized decision trees, parity decision-trees, approximating communication complexity of total functions, randomized communication complexity, ...
- It is also open for various computational models, such as Boolean formula depth, Boolean circuit size, etc where a proof of NP-hardness would have very dramatic consequences.

- The fundamental meta-complexity problem how hard is it to find an optimal (or near-optimal) algorithm? is wide open in many setting, including many computational models on which we have a good chance at solving the problem.
- E.g. size of deterministic decision trees, size/depth of randomized decision trees, parity decision-trees, approximating communication complexity of total functions, randomized communication complexity, ...
- It is also open for various computational models, such as Boolean formula depth, Boolean circuit size, *etc* where a proof of NP-hardness would have very dramatic consequences.
- Ultimately I am interested even in the weaker question: If a computational problem is hard, does there exist a short proof that it is hard? (I.e. is our problem in coNP).

- The fundamental meta-complexity problem how hard is it to find an optimal (or near-optimal) algorithm? is wide open in many setting, including many computational models on which we have a good chance at solving the problem.
- E.g. size of deterministic decision trees, size/depth of randomized decision trees, parity decision-trees, approximating communication complexity of total functions, randomized communication complexity, ...
- It is also open for various computational models, such as Boolean formula depth, Boolean circuit size, etc where a proof of NP-hardness would have very dramatic consequences.
- Ultimately I am interested even in the weaker question: If a computational problem is hard, does there exist a short proof that it is hard? (I.e. is our problem in coNP).

For the full text:

https://eccc.weizmann.ac.il/report/2024/034/

Thank you!