The hardness of decision-tree complexity

FLAT Seminar

Bruno Loff
University of Lisbon

The complexity of complexity

Suppose you are given a description of a computational problem P
and you wish to find the “best” algorithm for solving P

in a certain computational model M

What is the computational complexity of this “meta” task?

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

» This problem can be solved in polynomial time, e.g. by using
Moore's algorithm for automata minimization.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

» This problem can be solved in polynomial time, e.g. by using
Moore's algorithm for automata minimization.

» However, if the language P is described to you by way of a
non-deterministic finite automaton (NFA), finding the
smallest NFA for computing P is PSPACE-hard
(Jiang&Ravikumar, 1993).

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

» This problem can be solved in polynomial time, e.g. by using
Moore's algorithm for automata minimization.

» However, if the language P is described to you by way of a
non-deterministic finite automaton (NFA), finding the
smallest NFA for computing P is PSPACE-hard
(Jiang&Ravikumar, 1993).

» So this problem can be sometimes easy, sometimes hard, and
there are many cases where the complexity of the above
problem is unknown.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

» The above problem does not necessarily become harder as the
model M becomes more powerful. Soon | will give examples
of computational models M; and M, where M is more
powerful than My, but finding optimal algorithms is possible
for M but (e.g.) NP-hard for M;.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

» The above problem does not necessarily become harder as the
model M becomes more powerful. Soon | will give examples
of computational models M; and M, where M is more
powerful than My, but finding optimal algorithms is possible
for M but (e.g.) NP-hard for M;.

» The answer also depends on the kind of problems we wish to
understand. Soon | will give examples where we can answer
the above question efficiently, e.g., for total functions, but the
meta-problem becomes NP-hard for partial functions.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» So we have a fundamental theoretical question, and the
answer to it depends on:

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» So we have a fundamental theoretical question, and the
answer to it depends on:

» The computational model M being looked at.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» So we have a fundamental theoretical question, and the
answer to it depends on:
» The computational model M being looked at.
» The measure of complexity being used (what is “best”).

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» So we have a fundamental theoretical question, and the
answer to it depends on:

» The computational model M being looked at.

» The measure of complexity being used (what is “best”).

» The kind of problem P for which we wish to find good
algorithms.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a
certain computational model M

» So we have a fundamental theoretical question, and the
answer to it depends on:

» The computational model M being looked at.

» The measure of complexity being used (what is “best”).

» The kind of problem P for which we wish to find good
algorithms.

» How the problem P is described to us.

Some known results

Model Measure Problem Description Hardness reference

Some known results

Model Measure Problem Description Hardness reference

DFA size language DFA in P Moore '53

Some known results

Model Measure Problem Description Hardness reference

DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93
DNF size total £ truth-table NP-complete Masek '79

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93
DNF size total £ truth-table NP-complete Masek '79
DNF log-approx size total f truth-table in P Masek '79

Some known results

Model Measure Problem Description Hardness reference

DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93

DNF size total £ truth-table NP-complete Masek '79
DNF log-approx size total f truth-table in P Masek '79
DNF o(log)-approx total f truth-table NP-complete ~ AHMPS,KS'0¢

Some known results

Model Measure Problem Description Hardness reference

DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93

DNF size total £ truth-table NP-complete Masek '79
DNF log-approx size total f truth-table in P Masek '79
DNF o(log)-approx total f truth-table NP-complete ~ AHMPS,KS'0¢
DNF size total f DNF ag-complete Umans'01

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93
DNF size total £ truth-table NP-complete Masek '79
DNF log-approx size total f truth-table in P Masek '79
DNF o(log)-approx total f truth-table NP-complete ~ AHMPS,KS'0¢
DNF size total f DNF ag-complete Umans'01
Det-CC depth partial f matrix NP-hard LY'94

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93

DNF size total £ truth-table NP-complete Masek '79
DNF log-approx size total f truth-table in P Masek '79
DNF o(log)-approx total f truth-table NP-complete ~ AHMPS,KS'0¢
DNF size total f DNF ag-complete Umans'01

Det-CC depth partial f matrix NP-hard LY'94

Det-CC depth total £ matrix NP-hard HIL'24

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore '53
NFA size language NFA PSPACE-complete JR'93

DNF size total £ truth-table NP-complete Masek '79
DNF log-approx size total f truth-table in P Masek '79
DNF o(log)-approx total f truth-table NP-complete ~ AHMPS,KS'0¢
DNF size total f DNF ag-complete Umans'01

Det-CC depth partial f matrix NP-hard LY'94

Det-CC depth total £ matrix NP-hard HIL'24

PP-CC depth total f matrix in P LS'09

Our results

We understand the complexity of decision-tree complexity.

Decision trees

(explain what a decision-tree is)
/-W\W %q i)’nh

out pnt %(m-”h} A ALC?S:&-\"LAM C,Mkwu,

p, Lk

%N (0 45 the Smae gﬂw

“?:‘f%h:’l % gc\/wy w\}w\— taat wodd
%‘ fqbbw o \ptln foem

peo b do flat L@p

Previous results: the learning problem

(data space, queries, access to samples (x, f(x)), the goal is to
produce a classifier)

L “l\ LN \Ob

AEEEEE @
A
° @,

A

Our setting: the algorithmic problem

Model Measure Problem Description Hardness

Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

» In our setting, we assume that we are given the full
description of a total function f : {0,1}" — {0,1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries

as possible. l.e.:

Our setting: the algorithmic problem

Model Measure Problem Description Hardness

Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

» In our setting, we assume that we are given the full
description of a total function f : {0,1}" — {0,1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. l.e.:

» Our model is decision-trees.

Our setting: the algorithmic problem

Model Measure Problem Description Hardness

Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

» In our setting, we assume that we are given the full
description of a total function f : {0,1}" — {0,1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. l.e.:

» Our model is decision-trees.
» Our complexity measure is decision-tree depth (also known as

query complexity).

Our setting: the algorithmic problem

Model Measure Problem Description Hardness

Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

» In our setting, we assume that we are given the full
description of a total function f : {0,1}" — {0,1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. l.e.:

» Our model is decision-trees.

» Our complexity measure is decision-tree depth (also known as
query complexity).

» The given computational problem is a total Boolean function f,

Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

» In our setting, we assume that we are given the full
description of a total function f : {0,1}" — {0,1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. l.e.:

» Our model is decision-trees.

» Our complexity measure is decision-tree depth (also known as
query complexity).

» The given computational problem is a total Boolean function f,

» which is either given as a truth-table, or as a circuit (we wish
to understand both scenarios).

Our results

Theorem

The problem of computing the query complexity of f, when given
the truth-table of f, is NCy-hard, and it can be computed by
circuits of depth O(log nloglog n).

Our results

Theorem

The problem of computing the query complexity of f, when given
the truth-table of f, is NCy-hard, and it can be computed by
circuits of depth O(log nloglog n).

Theorem
The problem of computing the query complexity of f, when given
a Boolean circuit for computing f, is PSPACE-complete.

Our results

Theorem

The problem of computing the query complexity of f, when given
the truth-table of f, is NCy-hard, and it can be computed by
circuits of depth O(log nloglog n).

Theorem
The problem of computing the query complexity of f, when given
a Boolean circuit for computing f, is PSPACE-complete.

In this talk | will focus on the second result.

Our results

Theorem

The problem of computing the query complexity of f, when given
the truth-table of f, is NCy-hard, and it can be computed by
circuits of depth O(log nloglog n).

Theorem
The problem of computing the query complexity of f, when given
a Boolean circuit for computing f, is PSPACE-complete.

In this talk | will focus on the second result.
The first result is proven by the same technique.

The upper-bound

Definition (formal definition of the meta-problem)
The circuit-DT problem is as follows:

The upper-bound

Definition (formal definition of the meta-problem)
The circuit-DT problem is as follows:

> We are given as input a Boolean circuit C over n inputs
X1,...,Xn, cOmputing some function f : {0,1}" — {0,1}.

The upper-bound

Definition (formal definition of the meta-problem)
The circuit-DT problem is as follows:

> We are given as input a Boolean circuit C over n inputs
X1,...,Xn, cOmputing some function f : {0,1}" — {0,1}.

» We wish to output a decision tree for f of minimal depth.

The upper-bound

Definition (formal definition of the meta-problem)
The circuit-DT problem is as follows:

> We are given as input a Boolean circuit C over n inputs
X1,...,Xn, cOmputing some function f : {0,1}" — {0,1}.

» We wish to output a decision tree for f of minimal depth.

Our main result is that circuit-DT is PSPACE-complete.

The upper-bound

Definition (formal definition of the meta-problem)
The circuit-DT problem is as follows:

> We are given as input a Boolean circuit C over n inputs
X1,...,Xn, cOmputing some function f : {0,1}" — {0,1}.

» We wish to output a decision tree for f of minimal depth.

Our main result is that circuit-DT is PSPACE-complete. Let us
start with the upper-bound:

The upper-bound

Definition (formal definition of the meta-problem)
The circuit-DT problem is as follows:
> We are given as input a Boolean circuit C over n inputs
X1,...,Xn, cOmputing some function f : {0,1}" — {0,1}.

» We wish to output a decision tree for f of minimal depth.

Our main result is that circuit-DT is PSPACE-complete. Let us
start with the upper-bound:

Theorem
circuit-DT € PSPACE.

Theorem
circuit-DT € PSPACE.

(DT(f) <0 iff f is constant, how about DT(f) < k?)

‘1((‘7\3

B e SN (R

o PT(HEK &>
i) oT(]

M]:b é k—/\
Ly wi=\

| A DT(f l’m» !
{3[=> Biéb) V\”“W D/‘(mm-.g e\

Theorem
circuit-DT € PSPACE.

(DT(f) <0 iff f is constant, how about DT(f) < k7?)

The key difficulty: circuit-DT vs TQBF

(def. of TQBF, 3y1Vx1 ..., TQBF as a two-player game vs circuit-DT as a two-player

game)

TRRAF |
Av\ws' 2 C (B, ~99n) g Booleam Cineacd

©M+h+ whe Hhee. o0 no t

3316‘\0,1) VX\ B(jl'v;‘)_ s~ Eﬂu V"M C(ﬁf’ﬂ—«): 1-'
4

VS C‘w.wi'*"‘DT (D’T(f) <)4} - /éf‘n]V\
/\

Aajmt C U""av\5
aafpe G |)2

adis |
:9,;1?{,\1 ngl 3,;7_ 17’2’{{ . BA‘KV;_K Cliﬂ‘r%:(Coslad

Theorem
TQBF <, circuit-DT, hence circuit-DT is PSPACE-complete.

Theorem
TQBF <, circuit-DT, hence circuit-DT is PSPACE-complete.

» | will not prove the full theorem, but | will prove an important
auxiliary lemma.

Theorem
TQBF <, circuit-DT, hence circuit-DT is PSPACE-complete.

» | will not prove the full theorem, but | will prove an important
auxiliary lemma.

» This will give some idea of how one forces a circuit-DT game
to behave like a TQBF game.

Hao

Consider the following function:

Fn(ylay{axlvxj/la"-}/m)/r,nXmX;;) = fl bgd...d fn@gm

where:

fi=yiAy

e K\IAF’_\
'_{ xi fhog®...08-1D0fi=1
=

x! otherwise.

Consider the following function:

Fn(ylay{axlvlela"'yrh)/r,wxn»X;)) = fl D g1 6969f—ne}gﬂv

where:

fi=yiNyi
'_{ xi fHhog®...0g-1D0fi=1
I — /

x; otherwise.

» So gj depends on the variables yi, y1, x1, X1, ... Yi, !, Xi, X..

Consider the following function:

Fn(ylay{axlvxj/la"-}/m)/r,nXmX;;) = fl bgd...d fn@gm

where:

fi=yiNyi
'_{ xi fHhog®...0g-1D0fi=1
=

/

x; otherwise.

» So gj depends on the variables yi, y1, x1, X1, ... Yi, !, Xi, X..
» What is the decision-tree depth of F,?

Consider the following function:

Fn(ylay{axlvxj/la"-ym)/r,nXmX;;) = fl bgd...d fn@gm

where:

fi=yiNyi
'_{ xi fHhog®...0g-1D0fi=1
=

x! otherwise.

» So gj depends on the variables yi, y1, x1, X1, ... Yi, !, Xi, X..
» What is the decision-tree depth of F,?
» How might Alice and Bob play the circuit-DT game on F,?

Consider the following function:

Fn(ylay{axlvxj/la"-ym)/r,nXmX;;) = fl bgd...d fn@gm

where:

fi=yiNyi
'_{ xi fHhog®...0g-1D0fi=1
=

/

x; otherwise.

» So gj depends on the variables yi, y1, x1, X1, ... Yi, !, Xi, X..
» What is the decision-tree depth of F,?

» How might Alice and Bob play the circuit-DT game on F,?

» Remember, in the circuit-DT game, Alice chooses a variable,
and Bob sets that variable to some value.

Consider the following function:

Fn(ylay{axlvxj/la"-ym)/r,nXmX;;) = fl bgd...d fn@gm

where:
fi=yiNyi
x ifhega®.. . dgadfi=1
" | x/ otherwise.
» So gj depends on the variables yi, y1, x1, X1, ... Yi, !, Xi, X..
» What is the decision-tree depth of F,?
» How might Alice and Bob play the circuit-DT game on F,?
» Remember, in the circuit-DT game, Alice chooses a variable,

and Bob sets that variable to some value.

v

Bob's goal is to make the game last as long as possible before
the function becomes constant.

Fn(yla}/]/_axlax:/la"'yn’yr,wxn,X;)) = fl D g1 @@fn@g’”

fF=vAy .
i =YiNY x! otherwise.

g _{x,- fhog®.. . ©g10fi=1
. =

Fn(yl,y{,xl,x{,...y,,,y,',,x,,,x;,) =hogd...0HD g

 fhogd.. . 0gi10fi=1
feviny S ' '
i =YiNYi &i {x,’ otherwise.

» Suppose Alice chooses either y; or yj.

Fn(yl,y{,xl,xi,...y,,,y,',,x,,,x,',) =hogd...0HD g

J x fAOGO®.. Og1dfi=1
f;' =y /\yi, g = I/ 1 gl 8i—1 i
o x; otherwise.
» Suppose Alice chooses either y; or yj.
» If Bob sets the chosen y variable to £, then there is no need

to check the other variable to know that f; = 0.

Fn(yl,y{,xl,x{,...yn,y,',,x,,,x,’,) =hogd...0HD g

. , _x fthega®.. . ®g1Dfi=1

fi=yiny g = { x! otherwise.

» Suppose Alice chooses either y; or yj.

> If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has

saved one query.

Fn(yl,y{,xl,xi,...yn,y,',,x,,,x,',) =hogd...0HD g

fi:)/i/\yl', /

x; otherwise.

g _{x,- fhog®.. . ©g10fi=1
. =

» Suppose Alice chooses either y; or yj.

> If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has
saved one query.

» This forces Bob to set the chosen variable to 1.

Fn(yl,y{,xl,x{,...yn,y,',,x,,,x,’,) =f Dgd...o fn@gna

» Suppose Alice chooses either y; or yj.

> If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has
saved one query.

» This forces Bob to set the chosen variable to 1.

» So f; is not yet fixed.

Fn(yl,y{,xl,xi,...yn,y,',,x,,,x,',) =hogd...0HD g

» Suppose Alice chooses either y; or yj.

> If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has
saved one query.

» This forces Bob to set the chosen variable to 1.

» So f; is not yet fixed. Alice then asks about the other variable.

Fn(yl,y{,xl,xi,...yn,y,',,x,,,x,',) =hogd...0HD g

» Suppose Alice chooses either y; or yj.

> If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has
saved one query.

» This forces Bob to set the chosen variable to 1.

» So f; is not yet fixed. Alice then asks about the other variable.

» By some other part of the construction which | will soon
sketch, Bob will be forced to answer 0 to the second query.

Fn()/l,}/]/_,Xl,X:/[,---yn,y,,,,Xn,X,,,) = fl D g1 @@fn@g’”

fF=vAy .
i =YiNY x! otherwise.

g _{x,- fhog®.. . ©g10fi=1
. =

Suppose Alice chooses either y; or yj.

If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has
saved one query.

This forces Bob to set the chosen variable to 1.

So fi is not yet fixed. Alice then asks about the other variable.
By some other part of the construction which | will soon
sketch, Bob will be forced to answer 0 to the second query.
So by asking variables in the right order, Alice can force Bob
to set y1 to 1 or 0, as she desires.

Fn(yl,y{,xl,xi,...yn,y,',,x,,,x,',) =hogd...0HD g

fi=yiNy

x! otherwise.

g _{x,- fhog®.. . ©g10fi=1
. =

Suppose Alice chooses either y; or yj.

If Bob sets the chosen y variable to 1, then there is no need
to check the other variable to know that f{ = 0. So Alice
didn't need to ask about the other y variable, and she has
saved one query.

This forces Bob to set the chosen variable to 1.

So fi is not yet fixed. Alice then asks about the other variable.
By some other part of the construction which | will soon
sketch, Bob will be forced to answer 0 to the second query.
So by asking variables in the right order, Alice can force Bob
to set y1 to 1 or 0, as she desires.

This is exactly the power that Alice has in the TQBF game.

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi EBgl @@fn@gm

x! otherwise.

Xj if 16 D...Dg— EBf,Zl
fi=yiNyi &i :{ S &=

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi EBgl @@fn@gm

x! otherwise.

Xj if 16 D...Dg— EBf,Zl
fi=yiNyi &i :{ S &=

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi @gl @@fn@gna

x! otherwise.

Xj if 16 D...Dg— EBf,Zl
fi=yiNyi &i :{ S &=

» But why should Alice be forced to ask about y; and yj, at all.

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi @gl @@fn@gna

x! otherwise.

Xj if 16 D...Dg— EBf,Zl
fi=yiNyi &i :{ S &=

» But why should Alice be forced to ask about y; and yj, at all.
» Maybe she will do something else, something crazy.

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi 69gl @@fn@gna

fi:)/iAy/'/ /

x; otherwise.

. _{x,- ifhdog®..dg_1dfi=1
. =

» But why should Alice be forced to ask about y; and yj, at all.

» Maybe she will do something else, something crazy.

» However, if she did not ask about y; and yj, she does not
know the value of f1, and so she does not know which variable
x1 or xq is relevant for gi.

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi 69gl @@fn@gna

fi:)/iAy/'/ /

x; otherwise.

. _{x,- ifhdog®..dg_1dfi=1
. =

» But why should Alice be forced to ask about y; and yj, at all.

» Maybe she will do something else, something crazy.

» However, if she did not ask about y; and yj, she does not
know the value of f1, and so she does not know which variable
x1 or xq is relevant for gi. So she must ask both.

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi 69gl @@fn@gna

fi:)/iAy/'/ /

x; otherwise.

. _{x,- ifhdog®..dg_1dfi=1
. =

» But why should Alice be forced to ask about y; and yj, at all.

Maybe she will do something else, something crazy.

» However, if she did not ask about y; and yj, she does not
know the value of f1, and so she does not know which variable
x1 or xq is relevant for gi. So she must ask both.

» Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y; and y; in any
order, and then the relevant x (xq or xi),

v

fi=vyiNy

v

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi 69gl @@fn@gna

x! otherwise.

. _{x,- ifhdog®..dg_1dfi=1
. =

But why should Alice be forced to ask about y; and y, at all.
Maybe she will do something else, something crazy.

However, if she did not ask about y; and y;, she does not
know the value of f1, and so she does not know which variable
x1 or xq is relevant for gi. So she must ask both.

Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y; and y; in any
order, and then the relevant x (xq or xi),

This kind of construction, with several more non-obvious
tricks, eventually allows us to construct a DT-game where all
optimal strategies of Alice and Bob behave like optimal
strategies of a given TQBF instance.

fi=vyiNy

v

Fn(ylay]/_axluxia"’.yn).yr/nxnaxr,1) = fi 69gl @@fn@gna

x! otherwise.

. _{x,- ifhdog®..dg_1dfi=1
. =

But why should Alice be forced to ask about y; and y, at all.
Maybe she will do something else, something crazy.

However, if she did not ask about y; and y;, she does not
know the value of f1, and so she does not know which variable
x1 or xq is relevant for gi. So she must ask both.

Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y; and y; in any
order, and then the relevant x (xq or xi),

This kind of construction, with several more non-obvious
tricks, eventually allows us to construct a DT-game where all
optimal strategies of Alice and Bob behave like optimal
strategies of a given TQBF instance.

Let me briefly show you the final construction.

Conclusion

Conclusion

» The fundamental meta-complexity problem — how hard is it
to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

Conclusion

» The fundamental meta-complexity problem — how hard is it
to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

» E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . ..

Conclusion

» The fundamental meta-complexity problem — how hard is it
to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

» E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . ..

» It is also open for various computational models, such as
Boolean formula depth, Boolean circuit size, etc where a proof
of NP-hardness would have very dramatic consequences.

Conclusion

» The fundamental meta-complexity problem — how hard is it
to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

» E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . ..

» It is also open for various computational models, such as
Boolean formula depth, Boolean circuit size, etc where a proof
of NP-hardness would have very dramatic consequences.

» Ultimately | am interested even in the weaker question: If a
computational problem is hard, does there exist a short proof
that it is hard? (l.e. is our problem in coNP).

Conclusion

» The fundamental meta-complexity problem — how hard is it
to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

» E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . ..

» It is also open for various computational models, such as
Boolean formula depth, Boolean circuit size, etc where a proof
of NP-hardness would have very dramatic consequences.

» Ultimately | am interested even in the weaker question: If a
computational problem is hard, does there exist a short proof
that it is hard? (l.e. is our problem in coNP).

For the full text:
https://eccc.weizmann.ac.il/report/2024/034/
Thank youl!

Hao

Hao

Hao

Hao

