
The hardness of decision-tree complexity

FLAT Seminar

Bruno Loff
University of Lisbon

The complexity of complexity

Suppose you are given a description of a computational problem P

and you wish to find the “best” algorithm for solving P

in a certain computational model M

What is the computational complexity of this “meta” task?

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

▶ This problem can be solved in polynomial time, e.g. by using
Moore’s algorithm for automata minimization.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

▶ This problem can be solved in polynomial time, e.g. by using
Moore’s algorithm for automata minimization.

▶ However, if the language P is described to you by way of a
non-deterministic finite automaton (NFA), finding the
smallest NFA for computing P is PSPACE-hard
(Jiang&Ravikumar, 1993).

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ For example, a regular language P is given to you by way of a
DFA D for deciding it, and you wish to find a
smallest-possible DFA for deciding the same language. So the
description D is a DFA, the model M is DFAs.

▶ This problem can be solved in polynomial time, e.g. by using
Moore’s algorithm for automata minimization.

▶ However, if the language P is described to you by way of a
non-deterministic finite automaton (NFA), finding the
smallest NFA for computing P is PSPACE-hard
(Jiang&Ravikumar, 1993).

▶ So this problem can be sometimes easy, sometimes hard, and
there are many cases where the complexity of the above
problem is unknown.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

▶ The above problem does not necessarily become harder as the
model M becomes more powerful. Soon I will give examples
of computational models M1 and M2, where M2 is more
powerful than M1, but finding optimal algorithms is possible
for M2 but (e.g.) NP-hard for M1.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ The difficulty of the above problem depends not only on the
model. Even for the same model M, the difficulty of the
above problem will depend on how P is described.

▶ The above problem does not necessarily become harder as the
model M becomes more powerful. Soon I will give examples
of computational models M1 and M2, where M2 is more
powerful than M1, but finding optimal algorithms is possible
for M2 but (e.g.) NP-hard for M1.

▶ The answer also depends on the kind of problems we wish to
understand. Soon I will give examples where we can answer
the above question efficiently, e.g., for total functions, but the
meta-problem becomes NP-hard for partial functions.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ So we have a fundamental theoretical question, and the
answer to it depends on:

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ So we have a fundamental theoretical question, and the
answer to it depends on:
▶ The computational model M being looked at.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ So we have a fundamental theoretical question, and the
answer to it depends on:
▶ The computational model M being looked at.
▶ The measure of complexity being used (what is “best”).

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ So we have a fundamental theoretical question, and the
answer to it depends on:
▶ The computational model M being looked at.
▶ The measure of complexity being used (what is “best”).
▶ The kind of problem P for which we wish to find good

algorithms.

The complexity of complexity

Suppose you are given a description D of a computational problem
P and you wish to find the “best” algorithm for solving P in a

certain computational model M

▶ So we have a fundamental theoretical question, and the
answer to it depends on:
▶ The computational model M being looked at.
▶ The measure of complexity being used (what is “best”).
▶ The kind of problem P for which we wish to find good

algorithms.
▶ How the problem P is described to us.

Some known results

Model Measure Problem Description Hardness reference

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79
DNF log-approx size total f truth-table in P Masek ’79

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79
DNF log-approx size total f truth-table in P Masek ’79
DNF o(log)-approx total f truth-table NP-complete AHMPS,KS’08

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79
DNF log-approx size total f truth-table in P Masek ’79
DNF o(log)-approx total f truth-table NP-complete AHMPS,KS’08
DNF size total f DNF σp

2 -complete Umans’01

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79
DNF log-approx size total f truth-table in P Masek ’79
DNF o(log)-approx total f truth-table NP-complete AHMPS,KS’08
DNF size total f DNF σp

2 -complete Umans’01
Det-CC depth partial f matrix NP-hard LY’94

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79
DNF log-approx size total f truth-table in P Masek ’79
DNF o(log)-approx total f truth-table NP-complete AHMPS,KS’08
DNF size total f DNF σp

2 -complete Umans’01
Det-CC depth partial f matrix NP-hard LY’94
Det-CC depth total f matrix NP-hard HIL’24

Some known results

Model Measure Problem Description Hardness reference
DFA size language DFA in P Moore ’53
NFA size language NFA PSPACE-complete JR’93
DNF size total f truth-table NP-complete Masek ’79
DNF log-approx size total f truth-table in P Masek ’79
DNF o(log)-approx total f truth-table NP-complete AHMPS,KS’08
DNF size total f DNF σp

2 -complete Umans’01
Det-CC depth partial f matrix NP-hard LY’94
Det-CC depth total f matrix NP-hard HIL’24
PP-CC depth total f matrix in P LS’09

Our results

We understand the complexity of decision-tree complexity.

Decision trees

(explain what a decision-tree is)

Previous results: the learning problem

(data space, queries, access to samples (x , f (x)), the goal is to
produce a classifier)

Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

▶ In our setting, we assume that we are given the full
description of a total function f : {0, 1}n → {0, 1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. I.e.:

Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

▶ In our setting, we assume that we are given the full
description of a total function f : {0, 1}n → {0, 1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. I.e.:
▶ Our model is decision-trees.

Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

▶ In our setting, we assume that we are given the full
description of a total function f : {0, 1}n → {0, 1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. I.e.:
▶ Our model is decision-trees.
▶ Our complexity measure is decision-tree depth (also known as

query complexity).

Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

▶ In our setting, we assume that we are given the full
description of a total function f : {0, 1}n → {0, 1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. I.e.:
▶ Our model is decision-trees.
▶ Our complexity measure is decision-tree depth (also known as

query complexity).
▶ The given computational problem is a total Boolean function f ,

Our setting: the algorithmic problem

Model Measure Problem Description Hardness
Det-DTs depth total f circuit ?
Det-DTs depth total f truth-table ?

▶ In our setting, we assume that we are given the full
description of a total function f : {0, 1}n → {0, 1}, either as a
truth-table, or succinctly as a Boolean circuit, and we wish to
find a decision-tree for computing f that makes as few queries
as possible. I.e.:
▶ Our model is decision-trees.
▶ Our complexity measure is decision-tree depth (also known as

query complexity).
▶ The given computational problem is a total Boolean function f ,
▶ which is either given as a truth-table, or as a circuit (we wish

to understand both scenarios).

Our results

Theorem
The problem of computing the query complexity of f , when given
the truth-table of f , is NC1-hard, and it can be computed by
circuits of depth O(log n log log n).

Our results

Theorem
The problem of computing the query complexity of f , when given
the truth-table of f , is NC1-hard, and it can be computed by
circuits of depth O(log n log log n).

Theorem
The problem of computing the query complexity of f , when given
a Boolean circuit for computing f , is PSPACE-complete.

Our results

Theorem
The problem of computing the query complexity of f , when given
the truth-table of f , is NC1-hard, and it can be computed by
circuits of depth O(log n log log n).

Theorem
The problem of computing the query complexity of f , when given
a Boolean circuit for computing f , is PSPACE-complete.

In this talk I will focus on the second result.

Our results

Theorem
The problem of computing the query complexity of f , when given
the truth-table of f , is NC1-hard, and it can be computed by
circuits of depth O(log n log log n).

Theorem
The problem of computing the query complexity of f , when given
a Boolean circuit for computing f , is PSPACE-complete.

In this talk I will focus on the second result.
The first result is proven by the same technique.

The upper-bound

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

The upper-bound

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

▶ We are given as input a Boolean circuit C over n inputs
x1, . . . , xn, computing some function f : {0, 1}n → {0, 1}.

The upper-bound

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

▶ We are given as input a Boolean circuit C over n inputs
x1, . . . , xn, computing some function f : {0, 1}n → {0, 1}.

▶ We wish to output a decision tree for f of minimal depth.

The upper-bound

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

▶ We are given as input a Boolean circuit C over n inputs
x1, . . . , xn, computing some function f : {0, 1}n → {0, 1}.

▶ We wish to output a decision tree for f of minimal depth.

Our main result is that circuit-DT is PSPACE-complete.

The upper-bound

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

▶ We are given as input a Boolean circuit C over n inputs
x1, . . . , xn, computing some function f : {0, 1}n → {0, 1}.

▶ We wish to output a decision tree for f of minimal depth.

Our main result is that circuit-DT is PSPACE-complete. Let us
start with the upper-bound:

The upper-bound

Definition (formal definition of the meta-problem)

The circuit-DT problem is as follows:

▶ We are given as input a Boolean circuit C over n inputs
x1, . . . , xn, computing some function f : {0, 1}n → {0, 1}.

▶ We wish to output a decision tree for f of minimal depth.

Our main result is that circuit-DT is PSPACE-complete. Let us
start with the upper-bound:

Theorem
circuit-DT ∈ PSPACE.

Theorem
circuit-DT ∈ PSPACE.

(DT(f) ≤ 0 iff f is constant, how about DT(f) ≤ k?)

Theorem
circuit-DT ∈ PSPACE.

(DT(f) ≤ 0 iff f is constant, how about DT(f) ≤ k?)

The key difficulty: circuit-DT vs TQBF

(def. of TQBF, ∃y1∀x1 . . . , TQBF as a two-player game vs circuit-DT as a two-player

game)

Theorem
TQBF ≤p circuit-DT, hence circuit-DT is PSPACE-complete.

Theorem
TQBF ≤p circuit-DT, hence circuit-DT is PSPACE-complete.

▶ I will not prove the full theorem, but I will prove an important
auxiliary lemma.

Theorem
TQBF ≤p circuit-DT, hence circuit-DT is PSPACE-complete.

▶ I will not prove the full theorem, but I will prove an important
auxiliary lemma.

▶ This will give some idea of how one forces a circuit-DT game
to behave like a TQBF game.

Consider the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

where:

fi = yi ∧ y ′i

gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

Consider the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

where:

fi = yi ∧ y ′i

gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ So gi depends on the variables y1, y
′
1, x1, x

′
1, . . . yi , y

′
i , xi , x

′
i .

Consider the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

where:

fi = yi ∧ y ′i

gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ So gi depends on the variables y1, y
′
1, x1, x

′
1, . . . yi , y

′
i , xi , x

′
i .

▶ What is the decision-tree depth of Fn?

Consider the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

where:

fi = yi ∧ y ′i

gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ So gi depends on the variables y1, y
′
1, x1, x

′
1, . . . yi , y

′
i , xi , x

′
i .

▶ What is the decision-tree depth of Fn?

▶ How might Alice and Bob play the circuit-DT game on Fn?

Consider the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

where:

fi = yi ∧ y ′i

gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ So gi depends on the variables y1, y
′
1, x1, x

′
1, . . . yi , y

′
i , xi , x

′
i .

▶ What is the decision-tree depth of Fn?

▶ How might Alice and Bob play the circuit-DT game on Fn?

▶ Remember, in the circuit-DT game, Alice chooses a variable,
and Bob sets that variable to some value.

Consider the following function:

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

where:

fi = yi ∧ y ′i

gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ So gi depends on the variables y1, y
′
1, x1, x

′
1, . . . yi , y

′
i , xi , x

′
i .

▶ What is the decision-tree depth of Fn?

▶ How might Alice and Bob play the circuit-DT game on Fn?

▶ Remember, in the circuit-DT game, Alice chooses a variable,
and Bob sets that variable to some value.

▶ Bob’s goal is to make the game last as long as possible before
the function becomes constant.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

▶ This forces Bob to set the chosen variable to 1.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

▶ This forces Bob to set the chosen variable to 1.
▶ So f1 is not yet fixed.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

▶ This forces Bob to set the chosen variable to 1.
▶ So f1 is not yet fixed. Alice then asks about the other variable.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

▶ This forces Bob to set the chosen variable to 1.
▶ So f1 is not yet fixed. Alice then asks about the other variable.
▶ By some other part of the construction which I will soon

sketch, Bob will be forced to answer 0 to the second query.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

▶ This forces Bob to set the chosen variable to 1.
▶ So f1 is not yet fixed. Alice then asks about the other variable.
▶ By some other part of the construction which I will soon

sketch, Bob will be forced to answer 0 to the second query.
▶ So by asking variables in the right order, Alice can force Bob

to set y1 to 1 or 0, as she desires.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ Suppose Alice chooses either y1 or y ′1.
▶ If Bob sets the chosen y variable to 1, then there is no need

to check the other variable to know that f1 = 0. So Alice
didn’t need to ask about the other y variable, and she has
saved one query.

▶ This forces Bob to set the chosen variable to 1.
▶ So f1 is not yet fixed. Alice then asks about the other variable.
▶ By some other part of the construction which I will soon

sketch, Bob will be forced to answer 0 to the second query.
▶ So by asking variables in the right order, Alice can force Bob

to set y1 to 1 or 0, as she desires.
▶ This is exactly the power that Alice has in the TQBF game.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.
▶ Maybe she will do something else, something crazy.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.
▶ Maybe she will do something else, something crazy.
▶ However, if she did not ask about y1 and y ′1, she does not

know the value of f1, and so she does not know which variable
x1 or x ′1 is relevant for g1.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.
▶ Maybe she will do something else, something crazy.
▶ However, if she did not ask about y1 and y ′1, she does not

know the value of f1, and so she does not know which variable
x1 or x ′1 is relevant for g1. So she must ask both.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.
▶ Maybe she will do something else, something crazy.
▶ However, if she did not ask about y1 and y ′1, she does not

know the value of f1, and so she does not know which variable
x1 or x ′1 is relevant for g1. So she must ask both.

▶ Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y1 and y ′1 in any
order, and then the relevant x (x1 or x ′1),

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.
▶ Maybe she will do something else, something crazy.
▶ However, if she did not ask about y1 and y ′1, she does not

know the value of f1, and so she does not know which variable
x1 or x ′1 is relevant for g1. So she must ask both.

▶ Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y1 and y ′1 in any
order, and then the relevant x (x1 or x ′1),

▶ This kind of construction, with several more non-obvious
tricks, eventually allows us to construct a DT-game where all
optimal strategies of Alice and Bob behave like optimal
strategies of a given TQBF instance.

Fn(y1, y
′
1, x1, x

′
1, . . . yn, y

′
n, xn, x

′
n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn,

fi = yi ∧ y ′i gi =

�
xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x ′i otherwise.

▶ But why should Alice be forced to ask about y1 and y ′1, at all.
▶ Maybe she will do something else, something crazy.
▶ However, if she did not ask about y1 and y ′1, she does not

know the value of f1, and so she does not know which variable
x1 or x ′1 is relevant for g1. So she must ask both.

▶ Using this kind of reasoning, it can be shown that an optimal
Alice playing the DT-game must first ask y1 and y ′1 in any
order, and then the relevant x (x1 or x ′1),

▶ This kind of construction, with several more non-obvious
tricks, eventually allows us to construct a DT-game where all
optimal strategies of Alice and Bob behave like optimal
strategies of a given TQBF instance.

▶ Let me briefly show you the final construction.

Conclusion

Conclusion
▶ The fundamental meta-complexity problem — how hard is it

to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

Conclusion
▶ The fundamental meta-complexity problem — how hard is it

to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

▶ E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . . .

Conclusion
▶ The fundamental meta-complexity problem — how hard is it

to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

▶ E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . . .

▶ It is also open for various computational models, such as
Boolean formula depth, Boolean circuit size, etc where a proof
of NP-hardness would have very dramatic consequences.

Conclusion
▶ The fundamental meta-complexity problem — how hard is it

to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

▶ E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . . .

▶ It is also open for various computational models, such as
Boolean formula depth, Boolean circuit size, etc where a proof
of NP-hardness would have very dramatic consequences.

▶ Ultimately I am interested even in the weaker question: If a
computational problem is hard, does there exist a short proof
that it is hard? (I.e. is our problem in coNP).

Conclusion
▶ The fundamental meta-complexity problem — how hard is it

to find an optimal (or near-optimal) algorithm? is wide open
in many setting, including many computational models on
which we have a good chance at solving the problem.

▶ E.g. size of deterministic decision trees, size/depth of
randomized decision trees, parity decision-trees, approximating
communication complexity of total functions, randomized
communication complexity, . . .

▶ It is also open for various computational models, such as
Boolean formula depth, Boolean circuit size, etc where a proof
of NP-hardness would have very dramatic consequences.

▶ Ultimately I am interested even in the weaker question: If a
computational problem is hard, does there exist a short proof
that it is hard? (I.e. is our problem in coNP).

For the full text:
https://eccc.weizmann.ac.il/report/2024/034/

Thank you!

