
RNA Co-transcriptionality

1

Shinnosuke Seki
@ FLAT seminar Nov. 20, 2024

4

RNA DNA

Substrate

Natural
Computers
(enzymes)
if needed

Programming Platforms

+

DNA-based rule-110 cellular
automata (Woods et al. 2019)

RNA co-transcriptional folding

=

(Re-)programmable Molecular
Computers

(DNA triplex) toehold-mediated
strand displacement

…

RNA polymerase

Substrate

DNA/RNA are a chain of 4 kinds of bases A, G, C, T/U.

They may hybridize with each other primarily by 3 types of
base pairs (shown left) between purines (A, G) and
pyrimidines (C, T/U).

6

-- ACGUCAU ->

--AUGGCGU->

-- ACGUCAU -> --AUGGCGU->

Fok1-driven FA

Benenson et al. Nature 414, pp.430-434, 2001 7

…

Transition molecules

Fok1

8

Helix
Atoms of single-stranded RNA structures

Enzyme-driven single-stranded
computation
A molecular SAT solver.

1. Literals are assigned with DNA sequences
in such a way that
• x and ￢y hybridize with each other iff x = y

• x and y never hybridize, or neither do ￢x and ￢y

2. A SAT instance is programmed as a pool
made of DNA sequences obtained by
choosing one literal from each clause and
catenating the corresponding DNA
sequences.

3. Such a DNA sequence forms a hairpin iff
both x and ￢x of a variable are involved.

4. A restriction enzyme cuts a hairpin.

5. It suffices to check if some DNA sequence
has “survived.”

Sakamoto et al. Science 288, pp.1223-1226, 2000 9

RNA
co-transcriptionality
Programmable platform for in vitro/vivo computations

10

11

Geary, Rothemund, and Andersen, Science 345 (6198): 799-804, 2014 12

RNA polymerase

Figure 7-7 Essential Cell Biology (©Garland Science 2010)

high energy
bond

RNA polymerase

The idea of this diagram is from Feynman Lectures on Computation, 1996

P

P P

A T C

5’3’
DNA

S

U

S

A

RNA
5’ 3’

PP P S

G

3’
A → U, C → G, G → C, T → A

15

Transcripts from a single
template in parallel

Geary, Rothemund, and Andersen, Science 345 (6198): 799-804, 2014 16

RNA origami
architecture for hard-coding a structure into CF

int main() {
while (1) {

std:cout << “Hello RNA World!!”;
}
return 0;

}

17

Kissing loop

Helices are stabilized co-axially via base-stacking at their interface.

Two common motifs involving co-axial stacking are:

Helix
co-axial stacking

Pseudoknot

18

RNA origami
modular design of an RNA tile

Geary, Rothemund, and Andersen, Science 345 (6198): 799-804, 2014

19

ATTCGTA…?
CAGGTAC…?
…

RNA origami
hard-coded CF

Geary, Rothemund, and Andersen, Science 345 (6198): 799-804, 2014

Helix
co-axially stacked into a viral backbone

A. van Belkum et al. Nucleic Acids Research 13(21), pp.7673-7686. 20

Helix
RNA triple helix

J. A. Brown. WIREs RNA. 2020;11:e1598 21

RNA sequences are capable of keeping
their 3’-end away from their 5’-end,
thus,
• folding into non-tree structures,

transcending the bound of CFL;
• avoiding to be degraded by

ribonuclease (RNase).

RNA Origami to Oritatami

22

Quasi-2D engineering of
co-transcriptional folding

Co-axial stackings

+

Cross-over motifs

=

Oritatami
model of CF-driven computing

Geary et al. MFCS2016: 43:1-43:14 23

seed (input)Prefix of transcript
already fixed (frozen)

tentative bondThe nascent (recently-
transcribed) δ beads

fixed bond

Oritatami
model of CF-driven computing

Geary et al. MFCS2016: 43:1-43:14 24

The nascent fragment tries to fold with as many bonds as possible.

Geary et al. MFCS2016: 43:1-43:14

Oritatami
model of CF-driven computing

Geary et al. MFCS2016: 43:1-43:14 25

Transcribed! (according to the preprogrammed transcript)

If there are more than one way of fixing H7
point-wise or bond-wise, then nondeterminism.

Oritatami
model of CF-driven computing

An oritatami system consists of

• A finite set Σ of types of abstract
molecule (bead).

• w ∈Σ* (transcript)

• R ⊆Σ×Σ (affinity/binding rule)

• δ (delay)

• α (arity), max # of bonds per bead,
formed on the first-come-first-served
basis

States by definition!? No! Implement them
if needed.

Geary et al. MFCS2016: 43:1-43:14 26

Oritatami
Glider, a self-standing motif

28

With δ= 3, arbitrary arity α≧1, R = {(a, a’), (b, b’)}, the periodic transcript a-•-b’-b-•-
a’-a-•-… folds into the self-standing glider motif.

A transcript can fold differently, depending on what are around (environment).

Watters et al. Nat. Struct. Mol. Biol. 23(12), pp.1124-1131, 2016 29

Oritatami
context-sensitive folding

Terminator stem folded
(0mM NaF)

Terminator stem formation
failed (10mM NaF)

NaF

A transcript can fold differently, depending on what are around (environment).

30

Oritatami
context-sensitive folding

31

A transcript can fold differently, depending on what are around (environment).

Oritatami
context-sensitive folding

Homo-polymeric CF-driven computing

Complex structures are often made of simple identical (homo-) units (polymers) in
nature.

A periodic RNA transcript (homo-polymer) can be transcribed from a circular DNA.

Geary & Andersen, DNA2014: 1-19 32

Homo-polymeric CF-driven computing

Zigzag binary counter
• The first oritatami implementation

• Fixed bit-width (3 in the right figure),
but later endowed with capability to
widen by 1 bit at every overflow

• A transcript is of period 60 as 0-1-…-
11-12-…-29-30-…-41-42-…-59-0-1-….

• Increment by 1 per zigzag.

• The factors 0-…-11 and 30-…-41 serve
as a half-adder by folding into one of 4
possible conformations, depending on
what are around.

Geary et al. MFCS 2016. 43:1-43:14 33

Homo-polymeric CF-driven computing

Turing-universality
• Cyclic tag system (cts) is a binary

rewriting system made of a cyclic list of
u0, u1, …, uk-1 ∈ {0, 1}* and a pointer
0≦p < k. It rewrites a word w = a1a2…an
as:

1. temp = a2…an (a1 is deleted from w)

2. If a1 = 1, temp = temp • up

3. w = temp

4. p++ (mod k)

Geary et al. ISAAC2018: 23:1-23:13 34

35

Tessellation by a transcript of period 37 at delay 3

Homo-polymeric CF-driven computing

Turedo
(Tur[-ing] + [Ter-]edo [navilis])
Programming language for CF

36

Turedo

2D Turing machine on the hex grid that is
self-avoiding, that is,

• Once visited, a cell won’t be visited again.

• According to the configuration within the radius-r from
its head, it colors the current cell and decides which
neighbor to visit next, where r is a system parameter.

Example of radius-1 Turedo

(mod-4 clockwise walker)

Pchelina et al. STACS2022: 51:1-51:23 37

Turedo

2D Turing machine on the hex grid that is
self-avoiding, that is,

• Once visited, a cell won’t be visited again.

• According to the configuration within the radius-r from
its head, it colors the current cell and decides which
neighbor to visit next, where r is a system parameter.

Example of radius-1 Turedo

(Sierpinski triangle)

Pchelina et al. STACS2022: 51:1-51:23 38

Turedo

• A radius-1 stateless Turedo 𝑇 = 𝐴, 𝛿
is a pair of a tape alphabet 𝐴 including
the blank ⊥ and a transition function
𝛿: 𝐴6 → 𝐴 × BR, FR, S, FL, BL .

• Suppose 𝑇 has come from north,
where 𝑥5 is written. If
𝛿 𝑞, 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 = 𝑎, 𝑑 , then it

1. writes a ∈ 𝐴 at the current cell, and

2. moves to the neighbor cell in the direction
𝑑, as long as the cell is still blank;
otherwise, it halts.

39

Turedo

Pchelina et al. STACS2022: 51:1-51:23 40

Turedo-to-Oritatami Compiler Theorem.

A radius-1 stateless Turedo 𝑇 = 𝐴, 𝛿 can be programmed into a transcript 𝑤 of period
𝑂 𝐴 6log 𝐴 with which the deterministic delay-3 oritatami system Σ, 𝑤, 𝑅, 3, 6
simulates 𝑇 intrinsically, where

• Σ is universal, that is, independent of 𝑇, and consists of 1753 bead types.

• 𝑅 is also universal.

• Each period of 𝑤 folds into a macrocell of side length 𝑂 𝐴 3log 𝐴 .

Pchelina et al. STACS2022: 51:1-51:23 41

1. Scaffold layer

2. Read (log 𝐴 bits/side) layer

3. Write (log 𝐴 bits/side) layer

4. Exit layer

Macrocell
𝑂 𝐴 3log 𝐴

Shift-driven computing

Pchelina et al., LATIN2020, pp.425-436. 42

Input bits weighed
exponentially in binary

Output bit Shift reset through
speedbump

Length 𝑂 𝐴 66 log 𝐴 bits Max offset 𝑂 𝐴 6

Period of transcript

A Turedo 𝑇 = 𝐴, 𝛿 is encoded in the period of a transcript as:

Scaffold → Read → Write → Speedbump → Exit →

Scaffold hardcodes the macrocell’s skeleton

Read 𝒙 = 𝒙𝟎, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓 with 𝑥𝑠 = 𝑏𝑠,0, 𝑏𝑠,1, … , 𝑏𝑠,log 𝐴 −1

• Weigh-sums the bits in 𝑥0, 𝑥1, … 𝑥5 in this order as:

Δ 𝑥 = ෍

𝑠=0

5

෍

𝑖=0

log 𝐴 −1

𝑏𝑠,𝑖2𝑠log 𝐴 +𝑖

• Pushes the remaining transcript forward by this offset.

NOTE. these bits must have been written in a uniform format. It is uncomputable whether a cell will be

visited; let alone from which direction it will be entered.

Pchelina et al. STACS2022: 51:1-51:23 43

Read ↺: Reading pockets

1 Otherwise

Pchelina et al. STACS2022: 51:1-51:23 44

OK, readers, it’s you who weighs bits!!

Read ↺: Reading pockets

If the 𝑗-th bit is 1, then Δ 𝑥 += 2𝑠log 𝐴 +𝑗

Pchelina et al. STACS2022: 51:1-51:23 45

00 1

Shift Read
layer by

2𝑠log 𝐴 +1

Capacities : 2𝑠log 𝐴 +2 > 2𝑠log 𝐴 +1
 > 2𝑠log 𝐴 +0

(Pocket size)

Neighboring
macrocell

Period of transcript

A Turedo 𝑇 = 𝐴, 𝛿 is encoded in the period of a transcript as:

Scaffold → Read → Write → Speedbump → Exit →

Write 𝑎 and 𝑑 (letter & direction)

• All the transition tables for each bit and for exit-direction are encoded: 𝐴 6 entries per table.

• This layer is shifted by Δ 𝑥 so that only the referred entry by 𝑥 of each table is exposed at a position
readable later while the others are “hidden.”

• Outputs must be in a uniform format along all the sides.

Speedbump absorbs Δ 𝑥

Exit at the side d(x) specified by Write

Pchelina et al. STACS2022: 51:1-51:23 46

Read ↺ to Write ↻: U-turn pocket

Pchelina et al. STACS2022: 51:1-51:23 47

Read layer
shifted by Δ 𝑥

Write layer
shifted by Δ 𝑥

Capacity: 𝐴 6

The shift is transferred from Read to Write.

Write ↻: tables shifted by Δ(x)

Pchelina et al. STACS2022: 51:1-51:23 48

NOTE: The system knows in the stage of programming tables for each x, whether each bit will
be covered by Exit according to the exit direction d(x).

“Foldable” Speedbump: absorbing Δ 𝑥

Pchelina et al. STACS2022: 51:1-51:23 52

Based on the straight speedbump
[PchelinaSSU20] but quadratically more space-
efficient.

RNA Spinner
In vitro/vivo auto-synthesis of RNA components by NFA

63

Co-transcriptional
splicing

𝑢𝑥𝑠ℓ𝜃 𝑠 𝑦𝑣 → 𝑢𝑣 if

1. (𝑥, 𝑦) is an enzymatically-recognizable
context and

2. sℓ𝜃(𝑠) is a stable hairpin, where 𝜃 is an
antimorphic involution.

64

RNA spinner

Any molecular system consists of finitely many
(kinds) of DNA and RNA sequences. Let 𝑅 be
the finite set of RNA sequences it involves.

Recall that RNAs are naturally degraded.

𝑦0𝑎𝑥0 ∙ 𝑦0𝑏𝑥1 ∙ 𝑦1𝑎𝑥1 ∙ 𝑦1𝑏𝑥0 − 𝑦0𝑎𝑥0 ∙ 𝑦0𝑏𝑥1 ⋯

→ 𝑦0𝑎𝑎𝑥0 ∙ 𝑦0𝑏𝑥1 ∙ 𝑦1𝑎𝑥1 ⋯

→ 𝑦0𝑎𝑎𝑏𝑥1 ∙ 𝑦1𝑎𝑥1 ⋯

65

∙ 𝑦
0
a

𝑥
0

∙

𝑦
0

b

𝑥
1

∙

𝑦
1

a

𝑥
1

∙

𝑦
1

b

𝑥
0

Circular
DNA

encoding

Co-transcriptional

splicing

An NFA for a
superset of 𝑹.

Problems to be solved for RNA Spinner

Problem 1.

Given 𝑅 and a finite set 𝐷 of domains (via which sequences in 𝑅 interact
with each other or with other molecules), construct an NFA 𝐴 with as
few transitions as possible s.t.

𝑅 ⊆ 𝐿(𝐴) ⊆ 𝑅 ∪ Σ∗𝐷Σ∗

By setting 𝐷 = Σ, this problem is reduced to the NP-hard problem of
finding a transition-minimal NFA for finite languages [GruberH07]. Such a
ubiquitous domain however turns any system into a chaotic soup.

66

Problems to be solved for RNA Spinner

A hairpin gets less stable with a longer
loop and a shorter stem.

Contribution by stem is linear, while it
remains open how a loop is penalized.

Problem 2

Propose a proper energy model for
RNA hairpin stability, and study
hairpin-related operations by
considering only stable hairpins in
the model.

Freier et al., PNAS 83, pp.9373-9377, 1986

67

Thanks

Szilard Zsolt
Fazekas (Akita)

Daria Pchelina
(Lyon)

Nicolas Schabanel (Lyon) Guillaume Theyssier
(Marseille)

Hwee Kim
(Incheon)

Da-Jung Cho
(Suwon)

Max Wiedenhöft
(Kiel)

Cody W. Geary
(Aarhus)

References
• [FazekasIKMST24] S. Fazekas, N. Iwano, Y. Kihara, R. Matsuoka, S. Seki, and H. Takeuchi. Theoretical

Computer Science 999: 114550, 2024

• [FazekasKMST22] S. Fazekas, H. Kim, R. Matsuoka, S. Seki, and H. Takeuchi. ISAAC2022, LIPIcs 248, 37:1-
37:15

• [GearyMSS16] C. Geary, P-E. Meunier, N. Schabanel, and S. Seki. MFCS2016, LIPIcs 58, 43:1-43:14

• [GearyMSS18] C. Geary, P-E. Meunier, N. Schabanel, and S. Seki. ISAAC2018, LIPIcs 123, 23:1-23:13

• [GruberH07] H. Gruber and M. Holzer, LATA2007, 261-272, 2007

• [MaruyamaS21] K. Maruyama and S. Seki. Natural Computing, 20(2), pp.329-340, 2021

• [PchelinaSST22] D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier. STACS2022, LIPIcs 219, pp.51:1-
51:23

• [PchelinaSSU20] D. Pchelina, N. Schabanel, S. Seki, and Y. Ubukata. LATIN2020, LNCS 12118, pp.425-436

69

	Slide 1: RNA Co-transcriptionality
	Slide 3
	Slide 4
	Slide 6: Substrate
	Slide 7: Fok1-driven FA
	Slide 8: Helix Atoms of single-stranded RNA structures
	Slide 9: Enzyme-driven single-stranded computation
	Slide 10: RNA co-transcriptionality
	Slide 11
	Slide 12
	Slide 13: RNA polymerase
	Slide 14: RNA polymerase
	Slide 15: Transcripts from a single template in parallel
	Slide 16: RNA origami architecture for hard-coding a structure into CF
	Slide 17: Helix co-axial stacking
	Slide 18: RNA origami modular design of an RNA tile
	Slide 19: RNA origami hard-coded CF
	Slide 20: Helix co-axially stacked into a viral backbone
	Slide 21: Helix RNA triple helix
	Slide 22: RNA Origami to Oritatami
	Slide 23: Oritatami model of CF-driven computing
	Slide 24: Oritatami model of CF-driven computing
	Slide 25: Oritatami model of CF-driven computing
	Slide 26: Oritatami model of CF-driven computing
	Slide 28: Oritatami Glider, a self-standing motif
	Slide 29: Oritatami context-sensitive folding
	Slide 30: Oritatami context-sensitive folding
	Slide 31: Oritatami context-sensitive folding
	Slide 32: Homo-polymeric CF-driven computing
	Slide 33: Homo-polymeric CF-driven computing
	Slide 34: Homo-polymeric CF-driven computing
	Slide 35: Homo-polymeric CF-driven computing
	Slide 36: Turedo (Tur[-ing] + [Ter-]edo [navilis])
	Slide 37: Turedo
	Slide 38: Turedo
	Slide 39: Turedo
	Slide 40: Turedo
	Slide 41: Macrocell
	Slide 42: Shift-driven computing
	Slide 43: Period of transcript
	Slide 44: Read ↺: Reading pockets
	Slide 45: Read ↺: Reading pockets
	Slide 46: Period of transcript
	Slide 47: Read ↺ to Write ↻: U-turn pocket
	Slide 48: Write ↻: tables shifted by Δ(x)
	Slide 52: “Foldable” Speedbump: absorbing x
	Slide 63: RNA Spinner
	Slide 64: Co-transcriptional splicing
	Slide 65: RNA spinner
	Slide 66: Problems to be solved for RNA Spinner
	Slide 67: Problems to be solved for RNA Spinner
	Slide 68: Thanks
	Slide 69: References

