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Cellular Automata
General Idea

➜ Cellular automata are considered as homogeneously structured, massively
parallel computing systems.

➜ Instances of problems to be solved can be encoded as strings with a finite
number of different symbols.

➜ The input data supplied to CAs are strings of symbols.

➜ The output can be encoded in binary.



Cellular Automata
General Idea

➜ The computation can be decomposed into parallel processes, one for each bit
of the output.

➜ Each process computes a function mapping the input to YES or NO.

➜ Given some set of input symbols, the set of all strings that are evaluated to
YES is denoted by L(DEVICE).

➜ L(DEVICE) is called a formal language.



Cellular Automata
Two-Way (CA)

M = ⟨S, F,A,B,#, bl, br, δ⟩ # a1 a2 a3 · · · an #

Set of messages: B (where ⊥ means nothing to send)

Communication functions: bl, br : (S ∪ {#}) → (B ∪ {⊥})
Local transition function: δ : (B ∪ {⊥})× S × (B ∪ {⊥}) → S



Cellular Automata
One-Way (OCA)

M = ⟨S, F,A,B,#, bl, δ⟩ a1 a2 a3 · · · an #

Set of messages: B (where ⊥ means nothing to send)

Communication function: bl : (S ∪ {#}) → (B ∪ {⊥})
Local transition function: δ : S × (B ∪ {⊥}) → S



Cellular Automata
Language Acceptor

M = ⟨S, F,A,B,#, bl, δ⟩ a1 a2 a3 · · · an #

A cellular language acceptorM evaluates the input string to YES or NO.

➜ The set of all strings that are evaluated to YES is denoted by L(M).

➜ An input w is accepted (evaluated to YES), if the leftmost cell enters an accepting
state at some step during the computation on w.

➜ For a mapping t : N+ → N+, a formal language L is said to be of time
complexity t, if all inputs w in L are accepted within at most t(|w|) time steps.



Cellular Automata
Computational Capacity with Unlimited Communication

L (CS) RE

L (CA) DCSL

L (OCA) CFL

Llt(CA)

Llt(OCA) Lrt(CA) = L R
lt (OCA) DCFL

Lrt+log(OCA) METALIN

Lrt(OCA) LIN REG



Example

Real-time OCA accepting { anbn | n ≥ 1 }
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Problems andQuestions

➜ How much communication is necessary for a computation?

➜ How can the cooperation of the cells be organized optimally?

➜ From the viewpoint of energy and the costs of communication links, it would
be desirable to communicate a minimal number of times with a minimal
bandwidth of the links.



The Impact of the Number of Communications
Limiting the Number of Messages

Number of communications between cell i and cell i+ 1 up to time t:

com(i, t) = |{ j | 0 ≤ j < t and (br(cj(i)) ≠ ⊥ or bl(cj(i+ 1)) ≠ ⊥) }|

Maximal number of communications between two cells:

mcom(w) = max{ com(i, t(|w|)) | 1 ≤ i ≤ |w| − 1 }

Total number of communications:

scom(w) =

|w|−1∑
i=1

com(i, t(|w|))
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The Impact of the Number of Communications
Computational Capacity

Example

➜ { anbn | n ≥ 1 } ∈ Lrt(MC(const)-OCA)
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Signal with slope 2n+ ⌊√n⌋
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The Impact of the Number of Communications
Computational Capacity

Theorem [Vollmar 1981/1982]

1. Lrt(MC(const)-CA) ⊂ Lrt(SC(n)-CA)

2. REG ⊂ Lrt(MC(const)-CA) ⊂ Lrt(MC(
√
n)-CA) ⊂ Lrt(MC(n)-CA)

3. Llt(MC(const)-CA) ⊂ NL



The Impact of the Number of Communications
Towards an Infinite Communication Hierarchy

Theorem

Let f : N → N be a function. If f ∈ o(n2/log(n)), then language

{wcwR | w ∈ {a, b}+ }

is not accepted by any real-time SC(f)-CA.
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The Impact of the Number of Communications
Witness Languages for an Infinite Communication Hierarchy

φi(n) =

{
2n if i = 1

2φi−1(n) if i ≥ 2

Li = {w$φi(|w|)−2|w|wR | w ∈ {a, b}+ }

Theorem

Let i ≥ 1 be an integer and f : N → N be a function.

1. If f ∈ o((n log[i](n))/log[i+1](n)), then language Li is not accepted by any
real-time SC(f)-CA.

2. Language Li is accepted by some real-time SC(n log[i](n))-CA.
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The Impact of the Number of Communications
Infinite Communication Hierarchy

n log[i+1](n) ∈ o((n log[i](n))/log[i+1](n)).

Theorem

Let i ≥ 0 be an integer. Then

Lrt(SC(n log[i+1](n))-CA) is strictly included in Lrt(SC(n log[i](n))-CA).



Decidability Problems

➜ Undecidability for real-time MC(const)-OCAs by reduction of Hilbert’s tenth
problem.

➜ The problem is to decide for a given polynomial p(x1, x2, . . . , xn) with
integer coefficients whether there are integers α1, α2, . . . , αn such that
p(α1, α2, . . . , αn) = 0.

➜ Construction of a (rather technical) language L(p) which is empty if and only
if p(x1, x2, . . . , xn) = 0 has no solution.
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The language L(p) is accepted by some real-time MC(const)-OCA.

Corollary

The problems emptiness, finiteness, infiniteness, universality, equivalence, inclusion, reg-
ularity, and context-freeness are undecidable for arbitrary real-time MC(const)-OCAs.
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Decidability Problems

Question: Are the communication restrictions themselves decidable?

Answer: No.

➜ Given some real-time MC(const)-OCA M ′, we consider the language
LM ′ = { a|w|w | w ∈ L(M ′) }.

➜ LM ′ is accepted by a real-time OCA M , so that

➜ M is an MC(const)-OCA if and only if LM ′ is finite.

Theorem

It is undecidable for an arbitrary real-time OCA whether it is a real-time
MC(const)-OCA.
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Limiting the Inter-Cell Bandwidth
Difficulties

For communication-restricted devices, in general, one cannot utilize algorithmic
design techniques such as

➜ speeding up the computation time beyond real time,

➜ data packing and unpacking,

➜ folding and unfolding space-time diagrams, and

➜ multi-layer programming.
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Limiting the Inter-Cell Bandwidth
What Communication-Restricted Devices Can do

➜ There is a time-optimal one-bit solution of the famous Firing Squad
Synchronization Problem [Mazoyer 1989].

➜ There are rather complex number sequences which can be generated in real
time by one-bit CA [Umeo, Kamikawa 2002,2003].

➜ This implies:

{ a2n | n ≥ 0 } ∈ Lrt(CA1)

{ an2 | n ≥ 0 } ∈ Lrt(CA1)

{ ap | p is prim } ∈ Lrt(CA1)

{ ap | p is a Fibonacci number } ∈ Lrt(CA1)
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Limiting the Inter-Cell Bandwidth
What Communication-Restricted Devices Cannot do

Theorem

For all k ≥ 1, there is a regular language which is not accepted by any real-time CAk.

Witness languages:

Lk = {xvx | v ∈ {a}∗ and x ∈ {a0, . . . , a22k}}
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Limiting the Inter-Cell Bandwidth
What Communication-Restricted Devices Cannot do

Llt(CA) Llt(CAk)

Llt(OCA) Llt(OCAk)

Lrt(CA)
R Lrt(CAk)

R

Lrt(OCA) Lrt(OCAk)

REG



Cellular Automata with Minimal Communication

Question: What is the status of decidability problems when the communication
of cellular automata is drastically reduced to its minimum, but kept still enough
to have non-trivial devices?

To identify the minimum of communication,

1. each two adjacent cells are allowed to communicate constantly often only,

2. only one type of message is provided,

3. the information flow is one-way, and

4. the time complexity is bounded to real time.

5. That is, we consider the class of real-time MC(const)-OCA1.

6. The computations are non-trivial.



Cellular Automata with Minimal Communication

Question: What is the status of decidability problems when the communication
of cellular automata is drastically reduced to its minimum, but kept still enough
to have non-trivial devices?

To identify the minimum of communication,

1. each two adjacent cells are allowed to communicate constantly often only,

2. only one type of message is provided,

3. the information flow is one-way, and

4. the time complexity is bounded to real time.

5. That is, we consider the class of real-time MC(const)-OCA1.

6. The computations are non-trivial.



Cellular Automata with Minimal Communication

Question: What is the status of decidability problems when the communication
of cellular automata is drastically reduced to its minimum, but kept still enough
to have non-trivial devices?

To identify the minimum of communication,

1. each two adjacent cells are allowed to communicate constantly often only,

2. only one type of message is provided,

3. the information flow is one-way, and

4. the time complexity is bounded to real time.

5. That is, we consider the class of real-time MC(const)-OCA1.

6. The computations are non-trivial.



Cellular Automata with Minimal Communication
One-way One-bit O(One)-message Cellular Automata

Lemma

Let M = ⟨S, F,A,B,#, bl, δ⟩ be a real-time MC(const)-OCA and $ ̸∈ A be
a new symbol. Then a real-time MC(const)-OCA1 M ′ accepting the language
{w$(|B|+2)(|w|+1)v | v ∈ {$, A(A ∪ {$})∗}, w ∈ L(M) } can effectively be con-
structed.



Cellular Automata with Minimal Communication
One-way One-bit O(One)-message Cellular Automata
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Cellular Automata with Minimal Communication
Decidability

Theorem

Emptiness, finiteness, infiniteness, equivalence, inclusion, regularity, and context-
freeness are undecidable for real-time SC(n)-OCA1 and MC(const)-OCA1.

Emptiness, finiteness, infiniteness, equivalence, inclusion, regularity, and context-
freeness are undecidable for real-time SC(n)-OCA2 and MC(logn)-OCA2 accept-
ing bounded languages.
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Cellular Automata with Minimal Communication
Open Problems

Open Problems

How about the decidability for real-time SC(n)-OCA1 or MC(o(logn))-OCA1

accepting bounded languages?

Are there other natural restrictions that yield decidable properties?


