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Two-Dimensional Automata

▶ A two-dimensional (2D) automaton is a generalization of a
one-dimensional automaton.

▶ Two major differences:
1. Different input word
2. Different transition function
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Two-Dimensional Automata

▶ A two-dimensional (2D) automaton is a generalization of a
one-dimensional automaton.

▶ Two major differences:
1. Different input word
2. Different transition function

δ : (Q \ qaccept) × (Σ ∪ {#}) δ : (Q \ qaccept) × (Σ ∪ {#})
→ Q × {U, D, L, R} → 2Q×{U,D,L,R}

Deterministic Nondeterministic
four-way four-way

(2DFA-4W) (2NFA-4W)



Two-Dimensional Automata: History

▶ 2D automata were introduced by Manuel Blum and Carl
Hewitt in 1967.

M. Blum C. Hewitt

▶ Work on 2D automata has progressed in “waves” since the
introduction of the model.

M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In Proc. of
SWAT 1967, pages 155–160, 1967.



Two-Dimensional Automata: Properties

▶ 2D automata possess a number of useful properties.

Theorem
Nondeterministic 2D automata are more powerful than
deterministic 2D automata.

Theorem
Every deterministic 2D automaton can be converted to a halting
deterministic 2D automaton.



Two-Dimensional Automata: Examples

▶ Much is known about the kinds of languages recognized by
2D automata.

▶ Deterministic 2D automata:
▶ Given an m × n input word, does the word contain exactly k

occurrences of a given symbol?
▶ Given an m × n input word, are m and n coprime?
▶ Given an n × n input word, is n a power of two?

▶ Nondeterministic 2D automata:
▶ Given an n × n input word where n is odd, does the word

contain a 1 as its center symbol?
▶ Given an n × n input word where n is odd, is the word

symmetric about its center column?
▶ Unknown:

▶ Can deterministic 2D automata recognize the language of
unary p × p words where p is prime?



Restricted 2D Automata

▶ 2D automata do not have to be four-way automata.
▶ In fact, four-way automata can sometimes be undesirable,

since they’re Turing-equivalent.
▶ Restrict the transition function to get:

▶ Three-way (3W) automata: {D, L, R}
▶ Two-way (2W) automata: {D, R}

▶ Three-way automata cannot return to a row after moving
downward, but they can read symbols multiple times in a row.

▶ Two-way automata are “read-once”.



2D Automata Hierarchy

L2DFA-4W

L2DFA-3W

L2DFA-2W

L2NFA-4W

L2NFA-3W

L2NFA-2W

LA → LB indicates LA ⊂ LB.
LA - - LB indicates LA and LB are incomparable.
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Decision Problems

▶ Many of the classic decision problems for 1D languages can be
adapted for 2D languages as well.

▶ Some common decision problems for two 2D languages L(A)
and L(B):
▶ Membership: w ∈ L(A) for some 2D word w
▶ Emptiness: L(A) = ∅
▶ Universality: L(A) = Σ∗∗ (the set of all 2D words)
▶ Equivalence: L(A) = L(B)
▶ Inclusion: L(A) ⊆ L(B)
▶ Disjointness: L(A) ∩ L(B) = ∅



Decision Problems: Decidability

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
membership ✓ ✓ ✓ ✓ ✓ ✓

emptiness ✗ ✗ ✓ ✓ ✓ ✓

universality ✗ ✗ ✓ ✗ ✓ ✗

equivalence ✗ ✗ ? ✗ ✓ ✗

inclusion ✗ ✗ ✗ ✗ ✓ ✗

disjointness ✗ ✗ ✗ ✗ ✓ ?

T. J. Smith and K. Salomaa. Decision problems and projection languages
for restricted variants of two-dimensional automata. Theoret. Comput. Sci.
870:153–164, 2021.



Decision Problems: Decidability

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
membership ✓ ✓ ✓ ✓ ✓ ✓

emptiness ✗ ✗ ✓ ✓ ✓ ✓

universality ✗ ✗ ✓ ✗ ✓ ✗

equivalence ✗ ✗ ? ✗ ✓ ✗

inclusion ✗ ✗ ✗ ✗ ✓ ✗

disjointness ✗ ✗ ✗ ✗ ✓ ?

Open problems: Are the question marks ✓ or ✗?

T. J. Smith and K. Salomaa. Decision problems and projection languages
for restricted variants of two-dimensional automata. Theoret. Comput. Sci.
870:153–164, 2021.
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Language Operations

▶ We can also apply the standard 1D language operations to 2D
languages.

▶ Some of these operations can be applied as-is:
▶ Union: L1 ∪ L2
▶ Intersection: L1 ∩ L2
▶ Complement: L

▶ Other operations must be adapted to two dimensions:
▶ Concatenation: L1 ◦ L2 places all words in L1 adjacent to all

words in L2 in some way
▶ Reversal: LR reverses the order of the rows in all words of L

▶ Still other operations are unique to two dimensions:
▶ Rotation: L⟳ rotates all words in L by 90◦ clockwise
▶ Row Closure: L⊖ concatenates L with itself row-wise i ≥ 1

times.
▶ Row Cyclic Closure: Rearrange the top k rows of each word

in L to be shifted to the bottom for some 1 ≤ k ≤ # of rows.
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Language Operations: Set-Theoretic Closure

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
∪ ✓ ✓ ✗ ✓ ✗ ✓

∩ ✓ ✓ ✗ ✗ ✗ ✗

¬ ✓ ✗ ✓ ✗ ✓ ✗

T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. J. Autom. Lang. Comb.
28(1–3):201–220, 2023.
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▶ We can concatenate 2D words in two different ways:

row-wise or column-wise.
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... . . . ...
vm′,1 · · · vm′,n



Concatenation

▶ Let’s focus on “the” concatenation operation L1 ◦ L2.
▶ We can concatenate 2D words in two different ways:

row-wise or column-wise.

w : v =
w1,1 · · · w1,n v1,1 · · · v1,n′

... . . . ...
... . . . ...

wm,1 · · · wm,n vm,1 · · · vm,n′



Concatenation

▶ Let’s focus on “the” concatenation operation L1 ◦ L2.
▶ We can also concatenate two 2D words diagonally.

w ⊘ v =

w1,1 · · · w1,n x1,1 · · · x1,n′

...
...

...
...

wm,1 · · · wm,n xm,1 · · · xm,n′

y1,1 · · · y1,n v1,1 · · · v1,n′

...
...

...
...

ym′,1 · · · ym′,n vm′,1 · · · vm′,n′



Language Operations: Concatenation Closure

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
∪ ✓ ✓ ✗ ✓ ✗ ✓

∩ ✓ ✓ ✗ ✗ ✗ ✗

¬ ✓ ✗ ✓ ✗ ✓ ✗

⊖/: ✗ ✗ ✗ ✓⊖ ✗: ✗ ✗

⊘ ? ? ✗ ? ✗ ✓

(2NFA-2W is closed under ⊖
and : for unary alphabets.)

T. J. Smith and K. Salomaa. Concatenation operations and restricted
variants of two-dimensional automata. In Proc. of SOFSEM 2021, pages
147–158, 2021.
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∪ ✓ ✓ ✗ ✓ ✗ ✓

∩ ✓ ✓ ✗ ✗ ✗ ✗

¬ ✓ ✗ ✓ ✗ ✓ ✗

⊖/: ✗ ✗ ✗ ✓⊖ ✗: ✗ ✗
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(2NFA-2W is closed under ⊖
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Open problems: Are the question marks ✓ or ✗?

T. J. Smith and K. Salomaa. Concatenation operations and restricted
variants of two-dimensional automata. In Proc. of SOFSEM 2021, pages
147–158, 2021.



Language Operations: Other Closure Results

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
∪ ✓ ✓ ✗ ✓ ✗ ✓

∩ ✓ ✓ ✗ ✗ ✗ ✗

¬ ✓ ✗ ✓ ✗ ✓ ✗

⊖/: ✗ ✗ ✗ ✓⊖ ✗: ✗ ✗

⊘ ? ? ✗ ? ✗ ✓
R ✓ ✓ ✗ ✓ ✗ ✗

⟳ ✓ ✓ ✗ ✗ ✗ ✗

row/column
✗ ✗ ✗ ✓R ✗C ✗ ✗closure

row/column
✗ ✗ ✗ ✗ ✗ ✗cyclic closure

T. J. Smith. Closure, Decidability, and Complexity Results for Restricted
Variants of Two-Dimensional Automata. Doctoral thesis, Queen’s University,
2021.



Projection Operations

▶ We can project 2D words onto one dimension to produce
classical string languages.

▶ The row/column projection of a 2D language L is the 1D
language consisting of all first rows/first columns of all 2D
words in L.

w =
w1,1 · · · w1,n

... . . . ...
wm,1 · · · wm,n

prR(w) = w1,1w1,2 · · · w1,n

prC(w) = w1,1w2,1 · · · wm,1



Projection Operations: Space Complexity

A prR(L(A)) prC(L(A))
-4W NSPACE(O(n)) NSPACE(O(n))

General -3W DSPACE(O(1)) ?
-2W DSPACE(O(1)) DSPACE(O(1))
-4W ? ?

Unary -3W DSPACE(O(1)) ≤ NSPACE(O(log(n)))
-2W DSPACE(O(1)) DSPACE(O(1))

▶ Recall that:
▶ REG = DSPACE(O(1)).
▶ CSL = NSPACE(O(n)).

T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. J. Autom. Lang. Comb.
28(1–3):201–220, 2023.



Projection Operations: Space Complexity

A prR(L(A)) prC(L(A))
-4W NSPACE(O(n)) NSPACE(O(n))

General -3W DSPACE(O(1)) ?
-2W DSPACE(O(1)) DSPACE(O(1))
-4W ? ?

Unary -3W DSPACE(O(1)) ≤ NSPACE(O(log(n)))
-2W DSPACE(O(1)) DSPACE(O(1))

▶ Recall that:
▶ REG = DSPACE(O(1)).
▶ CSL = NSPACE(O(n)).

Open problems: What is the space complexity of each of
the question mark entries?

T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. J. Autom. Lang. Comb.
28(1–3):201–220, 2023.
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State Complexity

▶ Why should we care about projections from 2D to 1D?
▶ Observe all of the 2D projection language classes that are in

DSPACE(O(1)):
▶ 2DFA-3W row projection
▶ 2DFA-3W-1Σ row projection
▶ 2DFA-2W and 2NFA-2W row/column projection
▶ 2DFA-2W-1Σ and 2NFA-2W-1Σ row/column projection

▶ Since each of these projection languages is regular, we can
apply standard techniques and obtain state complexity
results for these languages.



State Complexity

▶ State complexity tradeoff:
▶ n-state 2NFA-2W → NFA:

2n − 1 ≤ nsc(·) ≤ 2n
▶ Operational state complexity:

▶ prR(L(A) ∪ L(B)) for 2NFA-2W:
2(m + n − 1) ≤ nsc(·) ≤ 2(m + n + 1)

▶ prR(L(A) ⊘ L(B)) for 2NFA-2W:
m + n − 1 ≤ nsc(·) ≤ 2m + n

T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. J. Autom. Lang. Comb.
28(1–3):201–220, 2023.
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State Complexity

▶ State complexity tradeoff:
▶ n-state 2NFA-2W → NFA:

2n − 1 ≤ nsc(·) ≤ 2n
▶ Operational state complexity:

▶ prR(L(A) ∪ L(B)) for 2NFA-2W:
2(m + n − 1) ≤ nsc(·) ≤ 2(m + n + 1)

▶ prR(L(A) ⊘ L(B)) for 2NFA-2W:
m + n − 1 ≤ nsc(·) ≤ 2m + n

Open problem: Can these bounds be tightened?

Open problem: What bounds exist for other 2D language
operations and models?

T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. J. Autom. Lang. Comb.
28(1–3):201–220, 2023.
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Decision Problems Revisited

▶ Recall some decision problems for 2D automaton models:
▶ 2DFA-4W: emptiness undecidable, universality undecidable.
▶ 2NFA-4W: emptiness undecidable, universality undecidable.
▶ 2DFA-3W: emptiness decidable, universality decidable.
▶ 2NFA-3W: emptiness decidable, universality undecidable.
▶ 2DFA-2W: emptiness decidable, universality decidable.
▶ 2NFA-2W: emptiness decidable, universality undecidable.

▶ For every 2D automaton model, membership is decidable.
▶ In fact, membership is in NL.

▶ However, emptiness and universality for restricted 2D
automata are PSPACE-hard.
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▶ In fact, membership is in NL.

▶ However, emptiness and universality for restricted 2D
automata are PSPACE-hard.

K. Lindgren et al. Complexity of two-dimensional patterns. J. Stat. Phys.
91(5/6):909–951, 1998.



Decision Problems Revisited

▶ Recall some decision problems for 2D automaton models:
▶ 2DFA-4W: emptiness undecidable, universality undecidable.
▶ 2NFA-4W: emptiness undecidable, universality undecidable.
▶ 2DFA-3W: emptiness decidable, universality decidable.
▶ 2NFA-3W: emptiness decidable, universality undecidable.
▶ 2DFA-2W: emptiness decidable, universality decidable.
▶ 2NFA-2W: emptiness decidable, universality undecidable.

▶ For every 2D automaton model, membership is decidable.
▶ In fact, membership is in NL.

▶ However, emptiness and universality for restricted 2D
automata are PSPACE-hard.

T. J. Smith. Closure, Decidability, and Complexity Results for Restricted
Variants of Two-Dimensional Automata. Doctoral thesis, Queen’s University,
2021.



PRAX Algorithms

▶ How might we get answers to these decision problems more
efficiently?
▶ Use randomization and approximation!

▶ Polynomial randomized approximation (PRAX)
algorithms were introduced by Konstantinidis et al. to decide
approximate versions of NFA decision problems.

▶ Key idea:
▶ Treat the decision problem as an estimation of the parameter

of some population.
▶ Use existing parameter estimation tools to obtain approximate

solutions.



PRAX Algorithms

▶ How might we get answers to these decision problems more
efficiently?
▶ Use randomization and approximation!

▶ Polynomial randomized approximation (PRAX)
algorithms were introduced by Konstantinidis et al. to decide
approximate versions of NFA decision problems.

▶ Key idea:
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solutions.

S. Konstantinidis et al. Approximate NFA universality and related problems
motivated by information theory. Theoret. Comput. Sci. 972:114076, 2023.



PRAX Algorithms

▶ Goal:
▶ Take a (possibly infinite) subset L of an infinite domain X and

test whether L is ϵ-close to being empty or full for some
ϵ ∈ (0, 1).

▶ Technical points:
▶ How do we sample from a finite distribution?

Take the distribution to be polynomially samplable.
▶ How do we sample from an infinite distribution?

Take the distribution to be tractable: use an algorithm to
“cut” the infinite tail such that the remaining finite events can
be sampled within a tolerance δ of the infinite distribution.

▶ How many samples are sufficient?
A linear amount relative to 1/δ. (Previously quadratic!)



PRAX Algorithms

▶ Goal:
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test whether L is ϵ-close to being empty or full for some
ϵ ∈ (0, 1).

▶ Technical points:
▶ How do we sample from a finite distribution?

Take the distribution to be polynomially samplable.
▶ How do we sample from an infinite distribution?

Take the distribution to be tractable: use an algorithm to
“cut” the infinite tail such that the remaining finite events can
be sampled within a tolerance δ of the infinite distribution.

▶ How many samples are sufficient?
A linear amount relative to 1/δ. (Previously quadratic!)

P. Andreou, S. Konstantinidis, and T. J. Smith. Improved randomized
approximation of hard universality and emptiness problems. J. Autom. Lang.
Comb. To appear.



PRAX Algorithms: Applications

▶ Where have PRAX algorithms been used?
▶ Deciding approximate NFA universality.

S. Konstantinidis et al. Approximate NFA universality and related problems
motivated by information theory. Theoret. Comput. Sci. 972:114076, 2023.



PRAX Algorithms: Applications

▶ Where have PRAX algorithms been used?
▶ Deciding approximate NFA universality.
▶ Deciding approximate NFA (in)equivalence.

S. Konstantinidis et al. On the difference set of two transductions.
Theoret. Comput. Sci. 1016:114780, 2024.



PRAX Algorithms: Applications

▶ Where have PRAX algorithms been used?
▶ Deciding approximate NFA universality.
▶ Deciding approximate NFA (in)equivalence.
▶ Deciding block NFA universality.
▶ Deciding 2D automaton emptiness and universality.
▶ Testing whether a CNF formula is a tautology.
▶ Testing whether a Diophantine equation has integer solutions.
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Comb. To appear.



PRAX Algorithms: Applications

▶ Where have PRAX algorithms been used?
▶ Deciding approximate NFA universality.
▶ Deciding approximate NFA (in)equivalence.
▶ Deciding block NFA universality.
▶ Deciding 2D automaton emptiness and universality.
▶ Testing whether a CNF formula is a tautology.
▶ Testing whether a Diophantine equation has integer solutions.

Theorem
There exists a PRAX algorithm for the 2D emptiness and
universality decision problems (relative to a “2D word” Dirichlet
distribution ⟨D2

t,d⟩) that runs in time O(1/ϵ · t−1
√

1/ϵ2 · s),
where s is the number of states of the input 2D automaton.

P. Andreou, S. Konstantinidis, and T. J. Smith. Improved randomized
approximation of hard universality and emptiness problems. J. Autom. Lang.
Comb. To appear.



PRAX Algorithms: Applications

▶ Where have PRAX algorithms been used?
▶ Deciding approximate NFA universality.
▶ Deciding approximate NFA (in)equivalence.
▶ Deciding block NFA universality.
▶ Deciding 2D automaton emptiness and universality.
▶ Testing whether a CNF formula is a tautology.
▶ Testing whether a Diophantine equation has integer solutions.

Open problem: Where else can we use PRAX algorithms?
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Conclusions

▶ 2D automata are a natural extension of the finite automaton
model, with many different variants or “flavours” possessing
different properties.

▶ Almost no problems are decidable for four-way 2D automata,
but more problems are decidable for three- and two-way
variants.

▶ Some language operations have positive closure results for
four-way 2D automata, while almost no operations are closed
for two-way 2D automata.

▶ Projection operations allow us to “convert” 2D languages to
1D and apply standard techniques (e.g., state complexity).

▶ We can obtain approximate solutions to 2D decision problems
using PRAX algorithms.



Future Work

▶ Resolve the decidability status of the remaining decision
problems.

▶ Resolve the closure status of diagonal concatenation for all 2D
models.

▶ Determine the space complexity of other 2D projection
language classes.

▶ Investigate state complexity bounds for other 2D language
operations and models.

▶ Investigate applications of PRAX algorithms.
▶ Lots to be done with 2D automata!



Shameless Advertisement

An open educational resource
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