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Difference Set of two Transducers

Let s, t be two transducers with the same domain. Their
difference set is

∆s,t = {w ∈ doms | s(w) ∕= t(w)}.

Their equality set is

Es,t = {w ∈ doms | s(w) = t(w)}.

The transducers are nondeterministic in general, so we have a set
of outputs for any given input.



Difference Set of two Transducers

Let s, t be two transducers with the same domain. Their
difference set is

∆s,t = {w ∈ doms | s(w) ∕= t(w)}.

Their equality set is

Es,t = {w ∈ doms | s(w) = t(w)}.

The transducers are nondeterministic in general, so we have a set
of outputs for any given input.

Example

Let px, sx be the prefix and suffix transducers;

px(w) = the set of prefixes of w .

Their difference set is equal to the set of all words containing at
least two distinct letters.



Transducer examples

0px = 1 E.g., px(001) = {00, 0, ε}

σ/σ

σ/ε

σ/ε

s0sub2 = s1 s2

0/0, 1/1

0/1

1/0

0/0, 1/1

0/1

1/0

0/0, 1/1



Chomsky-like types of the languages ∆s,t

Consider the language class
∆(TR) = {∆s,t | s, t ∈ TR, doms = domt}

Questions:

◮ How does this class relate to standard language classes?

◮ What about the classes defined when the transducers s, t
involved are of some restricted type?

Example

(continued) Let px, sx be the prefix and suffix transducers;

px(w) = the set of prefixes of w .

Their difference set is equal to the set of all words containing at
least two distinct letters. Thus, ∆px,sx is a regular language:
∆px,sx ∈ REG.



Types of a transducer t
◮ FINOUT: t(w) is finite, for all inputs w

◮ FINVAL: there is k ∈ N such that |t(w)| ≤ k for all w

◮ FUNC: |t(w)| ≤ 1 for all w

◮ HOM: domt = Σ∗ and the usual: t(xy) = t(x)t(y)
◮ REC: recognizable (will skip this)



Types of a transducer t
◮ FINOUT: t(w) is finite, for all inputs w

◮ FINVAL: there is k ∈ N such that |t(w)| ≤ k for all w

◮ FUNC: |t(w)| ≤ 1 for all w

◮ HOM: domt = Σ∗ and the usual: t(xy) = t(x)t(y)
◮ REC: recognizable (will skip this)

Notation

◮ ∆(Y) denotes the class of all difference sets between
transductions of type Y.

◮ ∆(Y1, Y2) denotes the class of all difference sets between a
transducer of type Y1 and one of type Y2.
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◮ FINOUT: t(w) is finite, for all inputs w

◮ FINVAL: there is k ∈ N such that |t(w)| ≤ k for all w

◮ FUNC: |t(w)| ≤ 1 for all w

◮ HOM: domt = Σ∗ and the usual: t(xy) = t(x)t(y)
◮ REC: recognizable (will skip this)

Notation

◮ ∆(Y) denotes the class of all difference sets between
transductions of type Y.

◮ ∆(Y1, Y2) denotes the class of all difference sets between a
transducer of type Y1 and one of type Y2.

For example, ∆(FUNC,TR) = the class of languages ∆s,t , for some

functional transducer s and some transducer t.
◮ E(Y) denotes the class of all equality sets between

transductions of type Y.

For example, the well-known class E(HOM)



Related Literature ?

Literature: We found no direct results on the ∆(Y)’s, but found
some in the same spirit and some that could be used to infer. . .

◮ The language that distinguishes two states of a DFA in
[Cezar, Nelma, Rogerio, 2016]
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Related Literature ?

Literature: We found no direct results on the ∆(Y)’s, but found
some in the same spirit and some that could be used to infer. . .

◮ The language that distinguishes two states of a DFA in
[Cezar, Nelma, Rogerio, 2016]

◮ E(HOM) ⊆ coOCL. Hence, ∆(HOM) ⊆ OCL.
[Harju, Karhumäki: Morphisms, 1997]

◮ E(FUNC) ⊆ CSL and E(FUNC) ∕⊆ CFL, follows from
[Foryś, Fixed point languages. . . 1986]

The paper shows that the fixed point {w | w ∈ t(w)} of any
transducer t is CSL. Then, for any g ,h ∈ FUNC, as Eg ,h is the

fixed point of h−1 ◦ g , we have that indeed E(FUNC) ⊆ CSL.



Hierarchy

The following are immediate:

∆(HOM) ⊆
∆(FUNC) ⊆

∆(FUNC,TR),∆(FINVAL) ⊆
∆(FINOUT,TR) ⊆

∆(TR)



REG = ∆(REC) ∆(HOM)

∆(FUNC)

∆(FINVAL) ∆(FUNC,TR)

∆(FINOUT,TR)

∆(TR)

NCM OCL

CSL

NPTheorem:

⊊ ⊊

⊆

⊆⊊

⊆⊆⊆

⊆

⊆ ⊆

∕⊆

∕⊇



The proofs of the inclusions are not long, but they put together
several “scattered” facts and adapt the proofs of some facts.

◮ ∆(FUNC,TR) ⊆ OCL: follows by adapting the proof of
“The prefix language of two s, t ∈ FUNC is coOCL”
in [J. Engelfriet, H.J. Hoogeboom: IPL 1988]

Pref(s,t)=all w such that one of s(w), t(w) is prefix of the other
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󰀌
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The proofs of the inclusions are not long, but they put together
several “scattered” facts and adapt the proofs of some facts.

◮ ∆(FUNC,TR) ⊆ OCL: follows by adapting the proof of
“The prefix language of two s, t ∈ FUNC is coOCL”
in [J. Engelfriet, H.J. Hoogeboom: IPL 1988]

Pref(s,t)=all w such that one of s(w), t(w) is prefix of the other

◮ ∆(FUNC) ⊊ ∆(FINVAL): shown using the other inclusion
∆(FUNC) ⊆ ∆(FUNC,TR) ⊆ ∆(OCL), and the example of
the finite valued transducers s, t with domain a+b+c+d+

such that s(an1bm1cn2dm2) = {an1 , am1} and
t(an1bm1cn2dm2) = {an2 , am2}. Then,

∆s,t =
󰀋
an1bm1cn2dm2 | {n1,m1} ∕= {n2,m2}

󰀌
/∈ CFL.

Corollary. We strengthen E(FUNC) ⊆ CSL to E(TR) ⊆ CSL
(via our ∆(TR) ⊆ CSL and the known CSL = coCSL)



The Word Problem

The word problem (in our context) is to decide, for given
transducers s, t and word w whether w ∈ ∆s,t .

The following statements hold true.

1. The word problem is PSPACE-complete.

2. The restriction of the word problem to the case where
the first, at least, transducer has finite outputs is
NP-complete.

3. The restriction of the word problem to the case where
at least one of the transducers involved is functional is
in the class P.

Note: Hardness reductions involve NFA universality.



PRAX Algorithms for Universality and Emptiness
PRAX: Polynomial-time Randomized ApproXimation.

Main ideas
◮ View universality and emptiness as probability mass problems

relative to a discrete probability distribution T : X → [0, 1]:
󰁓

x∈X T (x) = 1 and T (L) =
󰁓

x∈L T (x), for L ⊆ X .

T (L) = the probability/mass of the subset L, [Golomb, 1970]
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PRAX: Polynomial-time Randomized ApproXimation.

Main ideas
◮ View universality and emptiness as probability mass problems

relative to a discrete probability distribution T : X → [0, 1]:
󰁓

x∈X T (x) = 1 and T (L) =
󰁓

x∈L T (x), for L ⊆ X .

T (L) = the probability/mass of the subset L, [Golomb, 1970]

◮ Specifically:
a subset L of the domain X is universal if T (L) = 1;
a subset L of the domain X is empty if T (L) = 0.

◮ L ⊆ X is described by some algorithmic object α, that is,
L = L(α). We call α a subset description.

We use T (α) as shorthand for T
󰀃
L(α)

󰀄
.

◮ As the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}
can be hard, we seek approximate versions.



Reminder: T (α) = T
󰀃
L(α)

󰀄
=mass of L(α) ⊆ X

Seeking approximate versions of the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}

◮ Given (approximation) tolerance ε ∈ (0, 1), we assume we are
happy to decide

UT ,ε = {α : T (α) ≥ 1− ε} and ET ,ε = {α : T (α) ≤ ε}.
(ε-close being universal) (ε-close being empty)
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Reminder: T (α) = T
󰀃
L(α)

󰀄
=mass of L(α) ⊆ X

Seeking approximate versions of the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}

◮ Given (approximation) tolerance ε ∈ (0, 1), we assume we are
happy to decide

UT ,ε = {α : T (α) ≥ 1− ε} and ET ,ε = {α : T (α) ≤ ε}.
(ε-close being universal) (ε-close being empty)

◮ Unfortunately the approximate versions can be hard as well
[SK, Mastnak, Moreira, Reis: TCS 2023]

◮ What about standard randomized complexity classes (like RP
or coRP)? As all of the above problems can be hard, it is
unlikely that they belong to those [S.Arora, B.Barak: Comp.
Cxty 2008].



PRAX algorithm definition (universality)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for UT to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ UT then A(α, ε) = True;
2. if α /∈ UT ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.
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PRAX algorithm definition (universality)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for UT to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ UT then A(α, ε) = True;
2. if α /∈ UT ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.

◮ When A(α, ε) returns the answer False, this answer is correct:
α /∈ UT .

◮ If A(α, ε) returns True then probably α ∈ UT ,ε, in the sense that
α /∈ UT ,ε would imply P[A(α, ε) = False] ≥ 3/4.

◮ The algorithm returns the wrong answer when it returns True and
α /∈ UT ,ε, but this happens with probability ≤ 1/4.

◮ Running the algorithm k times reduces error probability to ≤ (1/4)k .



PRAX algorithm definition (emptiness)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for ET to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ ET then A(α, ε) = True;
2. if α /∈ ET ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.

◮ When A(α, ε) returns the answer False, this answer is correct:
α /∈ ET .

◮ If A(α, ε) returns True then probably α ∈ ET ,ε, in the sense that
α /∈ ET ,ε would imply P[A(α, ε) = False] ≥ 3/4.

◮ The algorithm returns the wrong answer when it returns True and
α /∈ ET ,ε, but this happens with probability ≤ 1/4.

◮ Running the algorithm k times reduces error probability to ≤ (1/4)k .



PRAX Theorem [P.Andreou, SK, Taylor Smith: JALC, to appear]

Let T be a tractable distribution family. Let ET be any empti-
ness problem and let UT be any universality problem, where
their instances α are subset descriptions with polynomially
decidable L(α). The algorithms below are PRAX algorithms
(relative to T ) for ET and UT .

UniversalT (α, ε)
c := 1.4;
n := ⌈c/(ε/2)⌉;
repeat n times:

x := selectT (ε/2);
if (x ∕= ⊥ and x /∈ L(α)

󰀄

return False

return True;

EmptyT (α, ε)
c := 1.4;
n := ⌈c/(ε/2)⌉;
repeat n times:

x := selectT (ε/2);
if (x ∕= ⊥ and x ∈ L(α)

󰀄

return False

return True;

Earlier version tested for NFA universality in

[SK, Mastnak, Moreira, Reis: TCS 2023]



PRAX algorithm for tractable T = {Tα}
Assumptions (inspired from [S.Arora, B.Barak: Comp. Cxty 2008])

Each decision problem (UT or ET ) and each PRAX algorithm
refers to a specific family T of tractable distributions.

Each problem instance α, which we call a subset description,
specifies a particular tractable distribution Tα ∈ T and a subset
L(α) of X = dom(Tα).

Example.

◮ If the set of instances is the set of NFAs then each NFA α
specifies the domain X = Σ∗, where Σ is the alphabet of α;
and the distribution Tα is the same for any NFA α over Σ.

◮ If every instance α specifies a finite domain, then we use the
uniform distribution on X = dom(Tα). For example, each α is
a Boolean expression in CNF with some number k , say, of
variables, and L(α) is the set of 2k truth assignments to the k
variables.



Tractable Distribution

A distribution T with domain X is called tractable if there
is a (randomized) algorithm selectT (δ), where δ ∈ (0, 1), that
is polynomial w.r.t. 1/δ and randomly selects an element
from the truncated distribution T F such that T (X −F ) ≤ δ,
where F is a set of X -elements determined by the algorithm
once (F can be defined via a static variable).

Truncated distributions. Selecting from a distribution D with
infinite domain X = domD could return an element of intractable
size. For this reason, given a desirable “small” positive δ < 1, we
like to choose a finite subset F of X and then select elements from
F , omitting the tail X − F of D, provided that D(X − F ) ≤ δ.
More specifically, if F = {x1, . . . , xk}, the F-truncated version

of D is the distribution DF with domain F ∪ {⊥}, where ‘⊥’ is an
object outside of X , such that

DF =
󰀃
D(x1), . . . ,D(xk), 1− D(F )

󰀄
.



Transducer examples

0px = 1 E.g., px(001) = {00, 0, ε}

σ/σ

σ/ε

σ/ε

s0sub2 = s1 s2

0/0, 1/1

0/1

1/0

0/0, 1/1

0/1

1/0

0/0, 1/1

A t-code is any language L s.t. t(L) ∩ L = ∅.



Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

◮ Let t be an input-altering transducer: w /∈ t(w), ∀ words w .

◮ A t-code is any language L s.t. t(L) ∩ L = ∅.
By varying t, we can model var length and error control codes.
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◮ Let t be an input-altering transducer: w /∈ t(w), ∀ words w .

◮ A t-code is any language L s.t. t(L) ∩ L = ∅.
By varying t, we can model var length and error control codes.

◮ If α is an NFA/DFA with L(α) being a t-code, then L(α) is
maximal iff the NFA α ∪ t(α) ∪ t−1(α) is universal.

Theorem/Corollary. There is a PRAX algorithm for the
maximality of regular t-codes relative to the Dirichlet word
distribution 〈Dt,d〉.



. . .Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

Theorem/Corollary. There is a PRAX algorithm for the
maximality of regular t-codes relative to the Dirichlet word
distribution 〈Dt,d〉.

Reminder: For t > 1, ζ(t) =
󰁓

n≥1 1/n
t is a real number.

Dirichlet distribution Dt,d of [Golomb, 1970], t > 1, d ≥ 0:
using it, many heuristic probability arguments based on the fictitious

uniform distribution on the positive integers become rigorous statements.

Dt,d(ℓ) = 1/ζ(t) · 1/(1 + ℓ− d)t

Confirm:
󰁓

ℓ≥d Dt,d(ℓ) = 1/ζ(t) ·
󰁓

ℓ≥d 1/(1 + ℓ− d)t = 1.

〈Dt,d〉: use Dt,d to select a length ℓ ≥ d , then select uniformly a
word of length ℓ.



. . .Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

Theorem/Corollary. There is a PRAX algorithm for the
maximality of regular t-codes relative to the Dirichlet word
distribution 〈Dt,d〉.

Reminder: For t > 1, ζ(t) =
󰁓

n≥1 1/n
t is a real number.

Dirichlet distribution Dt,d of [Golomb, 1970], t > 1, d ≥ 0:
using it, many heuristic probability arguments based on the fictitious

uniform distribution on the positive integers become rigorous statements.

Dt,d(ℓ) = 1/ζ(t) · 1/(1 + ℓ− d)t

Confirm:
󰁓

ℓ≥d Dt,d(ℓ) = 1/ζ(t) ·
󰁓

ℓ≥d 1/(1 + ℓ− d)t = 1.

〈Dt,d〉: use Dt,d to select a length ℓ ≥ d , then select uniformly a
word of length ℓ.

Nice: For any m ∈ N, selecting ℓ multiple of m has probability

P[ℓ multiple of m] = 1/mt .



Emptiness & Universality of 2D Automata

2DNFAs: [Giammarresi&Restivo], [Inque&Takanami], [Taylor],. . .

Theorem/Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the emptiness (and for the
universality) problem of 2D automata, relative to the 2D word
distribution 〈D2

t,d〉, which works in time

O
󰀃
1/ε · t−1

󰁴
1/ε2 · s

󰀄
,

where s is the number of states of the 2D automaton used
as input to the algorithm.

◮ The above holds for all (standard) 2D automata as they have
polynomial time membership [Taylor Smith: PhD 2021]

◮ 〈D2
t,d〉: pick lengths k , ℓ ≥ d from Dt,d ; then pick k × ℓ

symbols from Σ to form a 2D word over Σ.



Tautology testing

Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the problem of tautology test-
ing that works in time O

󰀃
|α|(1/ε)

󰀄
.

◮ Testing whether a CNF proposition α with some k variables is
a tautology is a universality problem UB: whether all 2

k truth
assignments satisfy α, equivalently, whether B(α) = 1, where
B = (Bk) and Bk is the uniform distribution on {T,F}k .



Tautology testing

Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the problem of tautology test-
ing that works in time O

󰀃
|α|(1/ε)

󰀄
.

◮ Testing whether a CNF proposition α with some k variables is
a tautology is a universality problem UB: whether all 2

k truth
assignments satisfy α, equivalently, whether B(α) = 1, where
B = (Bk) and Bk is the uniform distribution on {T,F}k .

◮ The problem is mentioned in [Fortnow: CACM 2022] as a
good candidate for an interesting problem not in the class P.
The approximate version UB,ε of UB is whether B(α) ≥ 1− ε.

◮ Could be useful in a non rigid decision making scenario, where
it is acceptable to know whether a proposition α → β is true
in “most cases” (i.e., the ratio of the satisfying truth
assignments over all truth assignments is ≥ 1− ε).



Diophantine Equations

Motivation from: [B. Grechuk, On the smallest open diophantine
equations. SIGACT News 53, 2022]

Theorem/Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the emptiness (and for the
universality) problem of Diophantine equations α(x , y , z) = 0
with three nonnegative variables, relative to the 3D length
distribution D3

t,d , which works in time

O
󰀃

t−1

󰁴
1/ε2 + 1/ε · t−1

󰁳
1/ε+ 1/ε · |α|

󰀄
.

D3
t,d : picks three integers k , ℓ,m ≥ d from Dt,d .



Experimental “Theorem” about the Diophantine equations
x3y2 − z3 ± 6 = 0 [B. Grechuk, SIGACT News 2022]

1. with probability ≥ 1023/1024, the set S of solutions (of either
equation) is 0.00001-close to being empty, relative to D3

t,d

with t = 2.00 and d = 2, i.e. D3
t,d(S) ≤ 0.00001.

2. with probability ≥ 1023/1024, the set S of solutions (of either
equation) is 0.001-close to being empty, relative to D3

t,d with

t = 1.50 and d = 2, i.e. D3
t,d(S) ≤ 0.001.

3. with probability ≥ 1023/1024, the set S of solutions (of either
equation) is 0.05-close to being empty, relative to D3

t,d with

t = 1.25 and d = 2, i.e. D3
t,d(S) ≤ 0.05.

PRAX implementation: using FAdo [Reis, Moreira: FAdo]



Research Directions

◮ Resolve proper containment issues in the hierarchy of the
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◮ Resolve proper containment issues in the hierarchy of the
transducer difference classes. For example, can we show that

the OCL language {anbn}n≥0 is not in ∆(FUNC) ?

∆(FUNC) ⊆ ∆(FUNC,TR) is proper ?

◮ PRAX theory: One can define PRAX algorithms for the
complements of the universality and emptiness problems (in a
“dual” manner). Does every problem in coNP and NP, or
even in PSPACE, have a PRAX algorithm ?

◮ PRAX modelling: Dt,d is biased, but approaches the fictitious
uniform distribution on N as t → 1+.



Some details on the Dirichlet distribution [Golomb, 1970]

Below, let d = 1, so dom(Dt,d) = N.

Dt,d is biased: For any m ∈ N, the probability that a selected
ℓ

$←− Dt,d is a multiple of m is 1/mt .

Hence, Pt [ℓ is even] = 1/2t and Pt [ℓ is odd] = 1− 1/2t .
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Below, let d = 1, so dom(Dt,d) = N.

Dt,d is biased: For any m ∈ N, the probability that a selected
ℓ

$←− Dt,d is a multiple of m is 1/mt .

Hence, Pt [ℓ is even] = 1/2t and Pt [ℓ is odd] = 1− 1/2t .

But, if t → 1+: Dt,d approaches the fictitious uniform distribution
on N. For any m and any r < m, we have:

Pt [ℓ%m = 1] > · · · > Pt [ℓ%m = m − 1] > Pt [ℓ%m = 0] = 1/mt

The above strict inequalities become ≥ (non-strict) when taking
limt→1+ Pt [ℓ%m = r ]. Hence, limt→1+ Pt [ℓ%m = r ] = 1/m.

Let (m1,m2) = 1. Then, for ℓ
$←− Dt,d we have

Pt [ℓ%(m1m2) = 0] = Pt [ℓ%m1 = 0] · Pt [ℓ%m2 = 0]



THANK YOU !


