
On the Difference Set of two Transductions
and PRAX Algorithms

Stavros Konstantinidis

Saint Mary’s University, Halifax, Canada

One FLAT World Seminar talk, June 18, 2025

Based on the papers:

[SK, Mitja Mastnak, Nelma Moreira, Rog. Reis: PRAX, TCS 2023]

[SK, N.Moreira, R.Reis, Juraj Šebej: Diff sets of Transd, TCS2024]

[P. Andreou, SK, Taylor Smith: PRAX apps, JALC, to appear]

On the Difference Set of two Transductions
and PRAX Algorithms

Stavros Konstantinidis

Saint Mary’s University, Halifax, Canada

One FLAT World Seminar talk, June 18, 2025

Based on the papers:

[SK, Mitja Mastnak, Nelma Moreira, Rog. Reis: PRAX, TCS 2023]

[SK, N.Moreira, R.Reis, Juraj Šebej: Diff sets of Transd, TCS2024]

[P. Andreou, SK, Taylor Smith: PRAX apps, JALC, to appear]

Some General References
Automata and FLs: Salomaa; Rozenberg; Hopcroft & Ullman
Transducers: Berstel; Sakarovitch
Complexity: O. Goldreich; Arora & Barak
Probabilistic Computing: Mitzenmacher & Upfal

Difference Set of two Transducers

Let s, t be two transducers with the same domain. Their
difference set is

∆s,t = {w ∈ doms | s(w) ∕= t(w)}.

Their equality set is

Es,t = {w ∈ doms | s(w) = t(w)}.

The transducers are nondeterministic in general, so we have a set
of outputs for any given input.

Difference Set of two Transducers

Let s, t be two transducers with the same domain. Their
difference set is

∆s,t = {w ∈ doms | s(w) ∕= t(w)}.

Their equality set is

Es,t = {w ∈ doms | s(w) = t(w)}.

The transducers are nondeterministic in general, so we have a set
of outputs for any given input.

Example

Let px, sx be the prefix and suffix transducers;

px(w) = the set of prefixes of w .

Their difference set is equal to the set of all words containing at
least two distinct letters.

Transducer examples

0px = 1 E.g., px(001) = {00, 0, ε}

σ/σ

σ/ε

σ/ε

s0sub2 = s1 s2

0/0, 1/1

0/1

1/0

0/0, 1/1

0/1

1/0

0/0, 1/1

Chomsky-like types of the languages ∆s,t

Consider the language class
∆(TR) = {∆s,t | s, t ∈ TR, doms = domt}

Questions:

◮ How does this class relate to standard language classes?

◮ What about the classes defined when the transducers s, t
involved are of some restricted type?

Example

(continued) Let px, sx be the prefix and suffix transducers;

px(w) = the set of prefixes of w .

Their difference set is equal to the set of all words containing at
least two distinct letters. Thus, ∆px,sx is a regular language:
∆px,sx ∈ REG.

Types of a transducer t
◮ FINOUT: t(w) is finite, for all inputs w

◮ FINVAL: there is k ∈ N such that |t(w)| ≤ k for all w

◮ FUNC: |t(w)| ≤ 1 for all w

◮ HOM: domt = Σ∗ and the usual: t(xy) = t(x)t(y)
◮ REC: recognizable (will skip this)

Types of a transducer t
◮ FINOUT: t(w) is finite, for all inputs w

◮ FINVAL: there is k ∈ N such that |t(w)| ≤ k for all w

◮ FUNC: |t(w)| ≤ 1 for all w

◮ HOM: domt = Σ∗ and the usual: t(xy) = t(x)t(y)
◮ REC: recognizable (will skip this)

Notation

◮ ∆(Y) denotes the class of all difference sets between
transductions of type Y.

◮ ∆(Y1, Y2) denotes the class of all difference sets between a
transducer of type Y1 and one of type Y2.

For example, ∆(FUNC,TR) = the class of languages ∆s,t , for some

functional transducer s and some transducer t.

Types of a transducer t
◮ FINOUT: t(w) is finite, for all inputs w

◮ FINVAL: there is k ∈ N such that |t(w)| ≤ k for all w

◮ FUNC: |t(w)| ≤ 1 for all w

◮ HOM: domt = Σ∗ and the usual: t(xy) = t(x)t(y)
◮ REC: recognizable (will skip this)

Notation

◮ ∆(Y) denotes the class of all difference sets between
transductions of type Y.

◮ ∆(Y1, Y2) denotes the class of all difference sets between a
transducer of type Y1 and one of type Y2.

For example, ∆(FUNC,TR) = the class of languages ∆s,t , for some

functional transducer s and some transducer t.
◮ E(Y) denotes the class of all equality sets between

transductions of type Y.

For example, the well-known class E(HOM)

Related Literature ?

Literature: We found no direct results on the ∆(Y)’s, but found
some in the same spirit and some that could be used to infer. . .

◮ The language that distinguishes two states of a DFA in
[Cezar, Nelma, Rogerio, 2016]

Related Literature ?

Literature: We found no direct results on the ∆(Y)’s, but found
some in the same spirit and some that could be used to infer. . .

◮ The language that distinguishes two states of a DFA in
[Cezar, Nelma, Rogerio, 2016]

◮ E(HOM) ⊆ coOCL. Hence, ∆(HOM) ⊆ OCL.
[Harju, Karhumäki: Morphisms, 1997]

Related Literature ?

Literature: We found no direct results on the ∆(Y)’s, but found
some in the same spirit and some that could be used to infer. . .

◮ The language that distinguishes two states of a DFA in
[Cezar, Nelma, Rogerio, 2016]

◮ E(HOM) ⊆ coOCL. Hence, ∆(HOM) ⊆ OCL.
[Harju, Karhumäki: Morphisms, 1997]

◮ E(FUNC) ⊆ CSL and E(FUNC) ∕⊆ CFL, follows from
[Foryś, Fixed point languages. . . 1986]

The paper shows that the fixed point {w | w ∈ t(w)} of any
transducer t is CSL. Then, for any g ,h ∈ FUNC, as Eg ,h is the

fixed point of h−1 ◦ g , we have that indeed E(FUNC) ⊆ CSL.

Hierarchy

The following are immediate:

∆(HOM) ⊆
∆(FUNC) ⊆

∆(FUNC,TR),∆(FINVAL) ⊆
∆(FINOUT,TR) ⊆

∆(TR)

REG = ∆(REC) ∆(HOM)

∆(FUNC)

∆(FINVAL) ∆(FUNC,TR)

∆(FINOUT,TR)

∆(TR)

NCM OCL

CSL

NPTheorem:

⊊ ⊊

⊆

⊆⊊

⊆⊆⊆

⊆

⊆ ⊆

∕⊆

∕⊇

The proofs of the inclusions are not long, but they put together
several “scattered” facts and adapt the proofs of some facts.

◮ ∆(FUNC,TR) ⊆ OCL: follows by adapting the proof of
“The prefix language of two s, t ∈ FUNC is coOCL”
in [J. Engelfriet, H.J. Hoogeboom: IPL 1988]

Pref(s,t)=all w such that one of s(w), t(w) is prefix of the other

The proofs of the inclusions are not long, but they put together
several “scattered” facts and adapt the proofs of some facts.

◮ ∆(FUNC,TR) ⊆ OCL: follows by adapting the proof of
“The prefix language of two s, t ∈ FUNC is coOCL”
in [J. Engelfriet, H.J. Hoogeboom: IPL 1988]

Pref(s,t)=all w such that one of s(w), t(w) is prefix of the other

◮ ∆(FUNC) ⊊ ∆(FINVAL): shown using the other inclusion
∆(FUNC) ⊆ ∆(FUNC,TR) ⊆ ∆(OCL), and the example of
the finite valued transducers s, t with domain a+b+c+d+

such that s(an1bm1cn2dm2) = {an1 , am1} and
t(an1bm1cn2dm2) = {an2 , am2}. Then,

∆s,t =
󰀋
an1bm1cn2dm2 | {n1,m1} ∕= {n2,m2}

󰀌
/∈ CFL.

The proofs of the inclusions are not long, but they put together
several “scattered” facts and adapt the proofs of some facts.

◮ ∆(FUNC,TR) ⊆ OCL: follows by adapting the proof of
“The prefix language of two s, t ∈ FUNC is coOCL”
in [J. Engelfriet, H.J. Hoogeboom: IPL 1988]

Pref(s,t)=all w such that one of s(w), t(w) is prefix of the other

◮ ∆(FUNC) ⊊ ∆(FINVAL): shown using the other inclusion
∆(FUNC) ⊆ ∆(FUNC,TR) ⊆ ∆(OCL), and the example of
the finite valued transducers s, t with domain a+b+c+d+

such that s(an1bm1cn2dm2) = {an1 , am1} and
t(an1bm1cn2dm2) = {an2 , am2}. Then,

∆s,t =
󰀋
an1bm1cn2dm2 | {n1,m1} ∕= {n2,m2}

󰀌
/∈ CFL.

Corollary. We strengthen E(FUNC) ⊆ CSL to E(TR) ⊆ CSL
(via our ∆(TR) ⊆ CSL and the known CSL = coCSL)

The Word Problem

The word problem (in our context) is to decide, for given
transducers s, t and word w whether w ∈ ∆s,t .

The following statements hold true.

1. The word problem is PSPACE-complete.

2. The restriction of the word problem to the case where
the first, at least, transducer has finite outputs is
NP-complete.

3. The restriction of the word problem to the case where
at least one of the transducers involved is functional is
in the class P.

Note: Hardness reductions involve NFA universality.

PRAX Algorithms for Universality and Emptiness
PRAX: Polynomial-time Randomized ApproXimation.

Main ideas
◮ View universality and emptiness as probability mass problems

relative to a discrete probability distribution T : X → [0, 1]:
󰁓

x∈X T (x) = 1 and T (L) =
󰁓

x∈L T (x), for L ⊆ X .

T (L) = the probability/mass of the subset L, [Golomb, 1970]

PRAX Algorithms for Universality and Emptiness
PRAX: Polynomial-time Randomized ApproXimation.

Main ideas
◮ View universality and emptiness as probability mass problems

relative to a discrete probability distribution T : X → [0, 1]:
󰁓

x∈X T (x) = 1 and T (L) =
󰁓

x∈L T (x), for L ⊆ X .

T (L) = the probability/mass of the subset L, [Golomb, 1970]

◮ Specifically:
a subset L of the domain X is universal if T (L) = 1;
a subset L of the domain X is empty if T (L) = 0.

PRAX Algorithms for Universality and Emptiness
PRAX: Polynomial-time Randomized ApproXimation.

Main ideas
◮ View universality and emptiness as probability mass problems

relative to a discrete probability distribution T : X → [0, 1]:
󰁓

x∈X T (x) = 1 and T (L) =
󰁓

x∈L T (x), for L ⊆ X .

T (L) = the probability/mass of the subset L, [Golomb, 1970]

◮ Specifically:
a subset L of the domain X is universal if T (L) = 1;
a subset L of the domain X is empty if T (L) = 0.

◮ L ⊆ X is described by some algorithmic object α, that is,
L = L(α). We call α a subset description.

We use T (α) as shorthand for T
󰀃
L(α)

󰀄
.

◮ As the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}
can be hard, we seek approximate versions.

Reminder: T (α) = T
󰀃
L(α)

󰀄
=mass of L(α) ⊆ X

Seeking approximate versions of the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}

◮ Given (approximation) tolerance ε ∈ (0, 1), we assume we are
happy to decide

UT ,ε = {α : T (α) ≥ 1− ε} and ET ,ε = {α : T (α) ≤ ε}.
(ε-close being universal) (ε-close being empty)

Reminder: T (α) = T
󰀃
L(α)

󰀄
=mass of L(α) ⊆ X

Seeking approximate versions of the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}

◮ Given (approximation) tolerance ε ∈ (0, 1), we assume we are
happy to decide

UT ,ε = {α : T (α) ≥ 1− ε} and ET ,ε = {α : T (α) ≤ ε}.
(ε-close being universal) (ε-close being empty)

◮ Unfortunately the approximate versions can be hard as well
[SK, Mastnak, Moreira, Reis: TCS 2023]

Reminder: T (α) = T
󰀃
L(α)

󰀄
=mass of L(α) ⊆ X

Seeking approximate versions of the problems

UT = {α : T (α) = 1} and ET = {α : T (α) = 0}

◮ Given (approximation) tolerance ε ∈ (0, 1), we assume we are
happy to decide

UT ,ε = {α : T (α) ≥ 1− ε} and ET ,ε = {α : T (α) ≤ ε}.
(ε-close being universal) (ε-close being empty)

◮ Unfortunately the approximate versions can be hard as well
[SK, Mastnak, Moreira, Reis: TCS 2023]

◮ What about standard randomized complexity classes (like RP
or coRP)? As all of the above problems can be hard, it is
unlikely that they belong to those [S.Arora, B.Barak: Comp.
Cxty 2008].

PRAX algorithm definition (universality)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for UT to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ UT then A(α, ε) = True;
2. if α /∈ UT ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.

PRAX algorithm definition (universality)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for UT to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ UT then A(α, ε) = True;
2. if α /∈ UT ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.

◮ When A(α, ε) returns the answer False, this answer is correct:
α /∈ UT .

◮ If A(α, ε) returns True then probably α ∈ UT ,ε, in the sense that
α /∈ UT ,ε would imply P[A(α, ε) = False] ≥ 3/4.

PRAX algorithm definition (universality)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for UT to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ UT then A(α, ε) = True;
2. if α /∈ UT ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.

◮ When A(α, ε) returns the answer False, this answer is correct:
α /∈ UT .

◮ If A(α, ε) returns True then probably α ∈ UT ,ε, in the sense that
α /∈ UT ,ε would imply P[A(α, ε) = False] ≥ 3/4.

◮ The algorithm returns the wrong answer when it returns True and
α /∈ UT ,ε, but this happens with probability ≤ 1/4.

◮ Running the algorithm k times reduces error probability to ≤ (1/4)k .

PRAX algorithm definition (emptiness)
The answer to [what a “good” approximation is] seems intimately related

to the specific computational task at hand [O.Goldreich, 2008]

We define a PRAX algorithm for ET to be a randomized
decision algorithm A(α, ε) satisfying the following conditions:

1. if α ∈ ET then A(α, ε) = True;
2. if α /∈ ET ,ε then P[A(α, ε) = False] ≥ 3/4;
3. A(α, ε) works in polynomial time w.r.t. 1/ε and |α|.

◮ When A(α, ε) returns the answer False, this answer is correct:
α /∈ ET .

◮ If A(α, ε) returns True then probably α ∈ ET ,ε, in the sense that
α /∈ ET ,ε would imply P[A(α, ε) = False] ≥ 3/4.

◮ The algorithm returns the wrong answer when it returns True and
α /∈ ET ,ε, but this happens with probability ≤ 1/4.

◮ Running the algorithm k times reduces error probability to ≤ (1/4)k .

PRAX Theorem [P.Andreou, SK, Taylor Smith: JALC, to appear]

Let T be a tractable distribution family. Let ET be any empti-
ness problem and let UT be any universality problem, where
their instances α are subset descriptions with polynomially
decidable L(α). The algorithms below are PRAX algorithms
(relative to T) for ET and UT .

UniversalT (α, ε)
c := 1.4;
n := ⌈c/(ε/2)⌉;
repeat n times:

x := selectT (ε/2);
if (x ∕= ⊥ and x /∈ L(α)

󰀄

return False

return True;

EmptyT (α, ε)
c := 1.4;
n := ⌈c/(ε/2)⌉;
repeat n times:

x := selectT (ε/2);
if (x ∕= ⊥ and x ∈ L(α)

󰀄

return False

return True;

Earlier version tested for NFA universality in

[SK, Mastnak, Moreira, Reis: TCS 2023]

PRAX algorithm for tractable T = {Tα}
Assumptions (inspired from [S.Arora, B.Barak: Comp. Cxty 2008])

Each decision problem (UT or ET) and each PRAX algorithm
refers to a specific family T of tractable distributions.

Each problem instance α, which we call a subset description,
specifies a particular tractable distribution Tα ∈ T and a subset
L(α) of X = dom(Tα).

Example.

◮ If the set of instances is the set of NFAs then each NFA α
specifies the domain X = Σ∗, where Σ is the alphabet of α;
and the distribution Tα is the same for any NFA α over Σ.

◮ If every instance α specifies a finite domain, then we use the
uniform distribution on X = dom(Tα). For example, each α is
a Boolean expression in CNF with some number k , say, of
variables, and L(α) is the set of 2k truth assignments to the k
variables.

Tractable Distribution

A distribution T with domain X is called tractable if there
is a (randomized) algorithm selectT (δ), where δ ∈ (0, 1), that
is polynomial w.r.t. 1/δ and randomly selects an element
from the truncated distribution T F such that T (X −F) ≤ δ,
where F is a set of X -elements determined by the algorithm
once (F can be defined via a static variable).

Truncated distributions. Selecting from a distribution D with
infinite domain X = domD could return an element of intractable
size. For this reason, given a desirable “small” positive δ < 1, we
like to choose a finite subset F of X and then select elements from
F , omitting the tail X − F of D, provided that D(X − F) ≤ δ.
More specifically, if F = {x1, . . . , xk}, the F-truncated version

of D is the distribution DF with domain F ∪ {⊥}, where ‘⊥’ is an
object outside of X , such that

DF =
󰀃
D(x1), . . . ,D(xk), 1− D(F)

󰀄
.

Transducer examples

0px = 1 E.g., px(001) = {00, 0, ε}

σ/σ

σ/ε

σ/ε

s0sub2 = s1 s2

0/0, 1/1

0/1

1/0

0/0, 1/1

0/1

1/0

0/0, 1/1

A t-code is any language L s.t. t(L) ∩ L = ∅.

Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

◮ Let t be an input-altering transducer: w /∈ t(w), ∀ words w .

◮ A t-code is any language L s.t. t(L) ∩ L = ∅.
By varying t, we can model var length and error control codes.

Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

◮ Let t be an input-altering transducer: w /∈ t(w), ∀ words w .

◮ A t-code is any language L s.t. t(L) ∩ L = ∅.
By varying t, we can model var length and error control codes.

◮ If α is an NFA/DFA with L(α) being a t-code, then L(α) is
maximal iff the NFA α ∪ t(α) ∪ t−1(α) is universal.

Theorem/Corollary. There is a PRAX algorithm for the
maximality of regular t-codes relative to the Dirichlet word
distribution 〈Dt,d〉.

. . .Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

Theorem/Corollary. There is a PRAX algorithm for the
maximality of regular t-codes relative to the Dirichlet word
distribution 〈Dt,d〉.

Reminder: For t > 1, ζ(t) =
󰁓

n≥1 1/n
t is a real number.

Dirichlet distribution Dt,d of [Golomb, 1970], t > 1, d ≥ 0:
using it, many heuristic probability arguments based on the fictitious

uniform distribution on the positive integers become rigorous statements.

Dt,d(ℓ) = 1/ζ(t) · 1/(1 + ℓ− d)t

Confirm:
󰁓

ℓ≥d Dt,d(ℓ) = 1/ζ(t) ·
󰁓

ℓ≥d 1/(1 + ℓ− d)t = 1.

〈Dt,d〉: use Dt,d to select a length ℓ ≥ d , then select uniformly a
word of length ℓ.

. . .Maximality of Codes [SK, Mastnak, Moreira, Reis: TCS 2023]

Theorem/Corollary. There is a PRAX algorithm for the
maximality of regular t-codes relative to the Dirichlet word
distribution 〈Dt,d〉.

Reminder: For t > 1, ζ(t) =
󰁓

n≥1 1/n
t is a real number.

Dirichlet distribution Dt,d of [Golomb, 1970], t > 1, d ≥ 0:
using it, many heuristic probability arguments based on the fictitious

uniform distribution on the positive integers become rigorous statements.

Dt,d(ℓ) = 1/ζ(t) · 1/(1 + ℓ− d)t

Confirm:
󰁓

ℓ≥d Dt,d(ℓ) = 1/ζ(t) ·
󰁓

ℓ≥d 1/(1 + ℓ− d)t = 1.

〈Dt,d〉: use Dt,d to select a length ℓ ≥ d , then select uniformly a
word of length ℓ.

Nice: For any m ∈ N, selecting ℓ multiple of m has probability

P[ℓ multiple of m] = 1/mt .

Emptiness & Universality of 2D Automata

2DNFAs: [Giammarresi&Restivo], [Inque&Takanami], [Taylor],. . .

Theorem/Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the emptiness (and for the
universality) problem of 2D automata, relative to the 2D word
distribution 〈D2

t,d〉, which works in time

O
󰀃
1/ε · t−1

󰁴
1/ε2 · s

󰀄
,

where s is the number of states of the 2D automaton used
as input to the algorithm.

◮ The above holds for all (standard) 2D automata as they have
polynomial time membership [Taylor Smith: PhD 2021]

◮ 〈D2
t,d〉: pick lengths k , ℓ ≥ d from Dt,d ; then pick k × ℓ

symbols from Σ to form a 2D word over Σ.

Tautology testing

Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the problem of tautology test-
ing that works in time O

󰀃
|α|(1/ε)

󰀄
.

◮ Testing whether a CNF proposition α with some k variables is
a tautology is a universality problem UB: whether all 2

k truth
assignments satisfy α, equivalently, whether B(α) = 1, where
B = (Bk) and Bk is the uniform distribution on {T,F}k .

Tautology testing

Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the problem of tautology test-
ing that works in time O

󰀃
|α|(1/ε)

󰀄
.

◮ Testing whether a CNF proposition α with some k variables is
a tautology is a universality problem UB: whether all 2

k truth
assignments satisfy α, equivalently, whether B(α) = 1, where
B = (Bk) and Bk is the uniform distribution on {T,F}k .

◮ The problem is mentioned in [Fortnow: CACM 2022] as a
good candidate for an interesting problem not in the class P.
The approximate version UB,ε of UB is whether B(α) ≥ 1− ε.

◮ Could be useful in a non rigid decision making scenario, where
it is acceptable to know whether a proposition α → β is true
in “most cases” (i.e., the ratio of the satisfying truth
assignments over all truth assignments is ≥ 1− ε).

Diophantine Equations

Motivation from: [B. Grechuk, On the smallest open diophantine
equations. SIGACT News 53, 2022]

Theorem/Corollary. [P. Andreou, SK, Taylor: JALC, to appear]

There is a PRAX algorithm for the emptiness (and for the
universality) problem of Diophantine equations α(x , y , z) = 0
with three nonnegative variables, relative to the 3D length
distribution D3

t,d , which works in time

O
󰀃

t−1

󰁴
1/ε2 + 1/ε · t−1

󰁳
1/ε+ 1/ε · |α|

󰀄
.

D3
t,d : picks three integers k , ℓ,m ≥ d from Dt,d .

Experimental “Theorem” about the Diophantine equations
x3y2 − z3 ± 6 = 0 [B. Grechuk, SIGACT News 2022]

1. with probability ≥ 1023/1024, the set S of solutions (of either
equation) is 0.00001-close to being empty, relative to D3

t,d

with t = 2.00 and d = 2, i.e. D3
t,d(S) ≤ 0.00001.

2. with probability ≥ 1023/1024, the set S of solutions (of either
equation) is 0.001-close to being empty, relative to D3

t,d with

t = 1.50 and d = 2, i.e. D3
t,d(S) ≤ 0.001.

3. with probability ≥ 1023/1024, the set S of solutions (of either
equation) is 0.05-close to being empty, relative to D3

t,d with

t = 1.25 and d = 2, i.e. D3
t,d(S) ≤ 0.05.

PRAX implementation: using FAdo [Reis, Moreira: FAdo]

Research Directions

◮ Resolve proper containment issues in the hierarchy of the
transducer difference classes. For example, can we show that

the OCL language {anbn}n≥0 is not in ∆(FUNC) ?

∆(FUNC) ⊆ ∆(FUNC,TR) is proper ?

Research Directions

◮ Resolve proper containment issues in the hierarchy of the
transducer difference classes. For example, can we show that

the OCL language {anbn}n≥0 is not in ∆(FUNC) ?

∆(FUNC) ⊆ ∆(FUNC,TR) is proper ?

◮ PRAX theory: One can define PRAX algorithms for the
complements of the universality and emptiness problems (in a
“dual” manner). Does every problem in coNP and NP, or
even in PSPACE, have a PRAX algorithm ?

Research Directions

◮ Resolve proper containment issues in the hierarchy of the
transducer difference classes. For example, can we show that

the OCL language {anbn}n≥0 is not in ∆(FUNC) ?

∆(FUNC) ⊆ ∆(FUNC,TR) is proper ?

◮ PRAX theory: One can define PRAX algorithms for the
complements of the universality and emptiness problems (in a
“dual” manner). Does every problem in coNP and NP, or
even in PSPACE, have a PRAX algorithm ?

◮ PRAX modelling: Dt,d is biased, but approaches the fictitious
uniform distribution on N as t → 1+.

Some details on the Dirichlet distribution [Golomb, 1970]

Below, let d = 1, so dom(Dt,d) = N.

Dt,d is biased: For any m ∈ N, the probability that a selected
ℓ

$←− Dt,d is a multiple of m is 1/mt .

Hence, Pt [ℓ is even] = 1/2t and Pt [ℓ is odd] = 1− 1/2t .

Some details on the Dirichlet distribution [Golomb, 1970]

Below, let d = 1, so dom(Dt,d) = N.

Dt,d is biased: For any m ∈ N, the probability that a selected
ℓ

$←− Dt,d is a multiple of m is 1/mt .

Hence, Pt [ℓ is even] = 1/2t and Pt [ℓ is odd] = 1− 1/2t .

But, if t → 1+: Dt,d approaches the fictitious uniform distribution
on N. For any m and any r < m, we have:

Pt [ℓ%m = 1] > · · · > Pt [ℓ%m = m − 1] > Pt [ℓ%m = 0] = 1/mt

The above strict inequalities become ≥ (non-strict) when taking
limt→1+ Pt [ℓ%m = r]. Hence, limt→1+ Pt [ℓ%m = r] = 1/m.

Some details on the Dirichlet distribution [Golomb, 1970]

Below, let d = 1, so dom(Dt,d) = N.

Dt,d is biased: For any m ∈ N, the probability that a selected
ℓ

$←− Dt,d is a multiple of m is 1/mt .

Hence, Pt [ℓ is even] = 1/2t and Pt [ℓ is odd] = 1− 1/2t .

But, if t → 1+: Dt,d approaches the fictitious uniform distribution
on N. For any m and any r < m, we have:

Pt [ℓ%m = 1] > · · · > Pt [ℓ%m = m − 1] > Pt [ℓ%m = 0] = 1/mt

The above strict inequalities become ≥ (non-strict) when taking
limt→1+ Pt [ℓ%m = r]. Hence, limt→1+ Pt [ℓ%m = r] = 1/m.

Let (m1,m2) = 1. Then, for ℓ
$←− Dt,d we have

Pt [ℓ%(m1m2) = 0] = Pt [ℓ%m1 = 0] · Pt [ℓ%m2 = 0]

THANK YOU !

