Simulating Time With Square-Root Space

Ryan Williams, MIT
image courtesy of DALL-E and IAS (Princeton)

oo oPrror Pk ok o

How space-efficiently can one simulate
time-efficient computations?

Every T (n)-time program will use no more than (about) T (n) space.
Given any T'(n)-time program M,
is there always a way to reimplement M, so it uses < T (n) space?

Canonical Problem: Circuit Evaluation / Circuit Value Problem (CVP)

[PV’'76, Borodin’77]
Given C, x compute the output CVPisin O(s/logs) space

On circuits of size s: [HPV’75, PR’81, HLMW’86]

e aboutstimetosolve CvP TIME[t] € SPACE[t/ logt]

* needs Q(s) space, to store “Pebbling approach” with an
intermediate gate values? ()(t/logt) lower bound
[LT’79] (more later on this)

" .
1 18 a
. .
)
",
) 1
¥
n s
»
. ‘
1
1

Model of Computation: Multitape Turing Machine

Old model, but very robust!

Examples: CVP, Sorting, FFT are in
TIME[n - polylog(n)],
n3~€-time matrix mult algorithms are in
TIME[n3~¢ - polylog(n)], etc.

* read/write k cells in each step (in fact, two tapes suffice [HS'66])
* the k tape heads can move

left/right, in each step

Open Problem: find any problem

TIME[T] = problems solvabl’e in solvable in O (n)-time on RAMs with no
O(T(n)) time on a MTM [HS’65] 0(n - polylog(n))-time MTM

Theorem: For all T: N — N with T(n) = n,
TIME[T] € SPACE[,/T log T]

Every MTM running in time T has an equivalent MTM using 0(\/T log T) space (!!)

(Now False) Conjecture: For all ¢ > 0, TIME[T] & SPACE[T1~¢]
[Sipser’86] Conjecture + Explicit Expanders = P = RP

(nowadays, we know [NW’94,IW’97,...] that we “only” need circuit lower bounds on time
in order to achieve derandomization; we don’t need space lower bounds on time)

Corollary: CVP € SPACE[\/n - polylog(n)]

By diagonalization, we can conclude new lower bounds (towards P # PSPACE):
Corollary: For all “nice” s(n) = n, SPACE[s] € TIME[s?/ log?(s)]
Corollary: There is an explicit [1 € SPACE[n] not in TIME[n?/ log? n]

Can the Theorem be improved?
Proposition: If TIME[T] € SPACE[T¢] for all € > 0, then P # PSPACE

Prior Work: TIME[T] < SPACE[T / log T}

Given MTM M, input x of length n
Partition the k tapes of M into
blocks of b cells

For simplicity: T(n) > n?, b = \/T(n)

Define a computation graph Gy »:
nodes: {0,1,...,T(n)/b}

each node represents a time interval: b steps of time

edges: fori < j, edge (i,) if “info computed in interval i is
needed to compute info in interval j”
Vi, (i —1,i) is an edge
need the last state from interval i — 1, to start interval i
fori < j, edge (i,j) if some block is visited in intervals
[l and j butis not visited inintervalsi + 1, ...,j — 1
Obs: during an interval, each tape has < 2 blocks accessed
Vi, indeg(i) < 2k + 1
gli) 2k +1
from from
blocks state

Prior Work: TIME[T] < SPACE[T / log T}

Given MTM M, input x of length n
Partition the k tapes of M into
blocks of b cells

For simplicity: T(n) > n?, b = \/T(n)

computation graph Gy, = (V, E)
V={01,..,T(n)/b}
fori <j, (i,j) € E iff “info computed in interval i is
needed to compute info in interval j”
Vi, indeg(i) < 2k + 1

Define strings with the info computed in each interval:

content(0): initial configuration of M on x [O(n) bits]
content(i): info computed during interval i [O(D) bits]
[state + head positions at end, tape blocks accessed]
Obs: given content(i) for all i with (i,j) € E,
can compute content(j) in O(b) time
Goal: Determine content(T (n)/b)

[contains accept/reject state!]

Prior Work: TIME[T] < SPACE[T / log T}
Now we have a problem on DAGs: computation graph Gy » = (V, E)

3 ﬁ V={01,..,T(n)/b)

fori <j, (i,j) € E iff “info computed in interval i is
Pebble Game: played on v-node graph

needed to compute info in interval j”
Vi, indeg(i) < 2k + 1

1. Can put pebble on source Define strings with the info computed in each interval:
2. Given pebbles on all i with (i,j) € E, content(0): initial configuration of M on x [0 (n) bits]
can put pebble on j content(i): info computed during interval i [0 (b) bits]

3. Canremove pebbles at any time
How many pebbles needed to put a
pebble on the last node? [HPV’75,LT'79]
O(v/logv) for DAGs of O(1) indegree
Store only O(T/b)/1og(T /b)) content Goal: Determine content(T'(n)/b)
strings at a time = O(T /log(T /b)) space [contains accept/reject state!]

[state + head positions at end, tape blocks accessed]

Obs: given content(i) for all i with (i,j) € E,
can compute content(j) in O(b) time

Towards Low Space: The Tree Evaluation Problem (TEP)

[Braverman-Cook-McKenzie-Santhanam-Wehr’09]

Parameters d, b, h > 0. Given: d-ary tree of height h

Each inner node u is labeled by f;,: {0,1}4? - {0,1}"
[each f,, is given as a table of length 2¢'°]

Each leaf £ is labeled by a value a, € {0,1}” [d" values]
Foraninner nodeu, ifa, 4, ..., a, 4 are the values of the

children of u, then value of uis a,, := f,,(ay 1, ..., Ay 4) ‘ . ‘ b
ag..q (S {0,1}b A4...d (S {0,1}b

Goal: Find value of the root: a. € {0,1}?

Simple recursive algorithm: How much space?
TE(v): If vis a leaf, return a,

Fori =1,..,d, compute A; = TE(v;)
Return f,,(44, ...,Ag) and erase 44, ..., A,
Takes O(h - d - b) space = 0(log® N) for input length N

[Braverman et al] showed LBs in
restricted settings, conjectured
TEP & NL

Towards Low Space: The Tree Evaluation Problem (TEP)

[Braverman-Cook-McKenzie-Santhanam-Wehr’09]

Parameters d, b, h > 0. Given: d-ary tree of height h
Each leaf £ is labeled by a value a, € {0,1}?
Each inner node u is labeled by £,: {0,1}4? — {0,1}?

Goal: Find value of the root: a. € {0,1}?
Simple algorithm takes O (hdb) space — stack of height h

[Cook-l\/lertz’24] T.EP in O(hlog(db) + db) space! a1 € {0,1}? a,..q € {0,1)?
Stack of height h, with only O(log(db)) bits on each level

Key Idea: The simple algorithm allocates fresh space for each value computed at each level

Instead, XOR values into existing space! Algorithm XORs the value of u into existing space,
assuming an oracle that can XOR the values of u’s children into existing space.

Theorem: For T: N — N with T(n) > n?, TIME[T] S SPACE[VT - log(T)]

Idea: Given time-T MTM M and input x, reduce to (exp-sized) TEP instance

Assume we know G o [either it’s stored in memory, or we can compute its edges efficiently]
Setd :=2k+1,h:=1+4+T(n)/b, and set b so that for all i, |content(i)| < b
Extend Cook-Mertz for trees with < d children at each node, and max height h

[Folklore] Boolean circuits of depthh > Boolean formulas of depth h

Parsa~aW

This transformation works just as well for
circuits and formulas with b-bit values on the wires

-

< Each gate is indexed
by a path from a gate
in the circuit to the
output gate

Computing content in Gy, , is evaluating a circuit over b-bit values
TEP = Evaluating a formula over b-bit values of depth h and fan-in d

Theorem: For T: N — N with T(n) > n?, TIME[T] S SPACE[VT - log(T)]

Idea: Given time-T MTM M and input x, reduce to (exp-sized) TEP instance

Assume we know G o [either it’s stored in memory, or we can compute its edges efficiently]
Setd :=2k+1,h:=1+4+T(n)/b, and set b so that for all i, |content(i)| < b

We can evaluate content(T (n)/b) of G, , using the Cook-Mertz procedure!
Space of Cook-Mertz: O(d - b + h -log(d - b)) < O(b + (T'logb)/b)
set b to minimize = O(W) space
BUT! We don’t know G, , ...

Easiest fix: Program M so that we can calculate all head positions quickly (in advance)

Def. M is oblivious if Vn and x of length n, head movements of M on x only depend onn

Thm [HS’66,PF'79] For all MTM M in T (n) time, there’s an equivalent two-tape oblivious
M' that runs in O(T(n)log T (n)) time. Given n, i in binary, head positions of M’ at step i

can be computed in poly(log T(n)) time. - can calculate G ! (But we lose a little)

Open Problems

Extend to RAMs? (Show TIMEg 4y (T) € SPACE(T17%)?)

Extend to Parallel Machines? (Show TIME(T) € ATIME (T17%)?)
Would imply super-linear time lower bounds for problems like
Quantified Boolean Formulas!

TIME(T) € SPACE (T°>~%)? This would resolve the first two!
Improve this bound for single-tape Turing machines!

Barrier?

I’'m very lucky that | found this reduction after Cook-Mertz, or | would
have definitely declared the reduction to be a “barrier”...

“You can’t solve Tree Eval in much less space, or you’d improve HPV...
...which we know you can’t do”

image courtesy of ChatGPT

