
Simulating Time With Square-Root Space

Ryan Williams, MIT

and IAS (Princeton)image courtesy of DALL-E



𝒙𝟏

⋮

⋮

𝒙𝒏

0

1

0

1

1

0

1

0

1

0

0

1

Every 𝑻(𝒏)-time program will use no more than (about) 𝑻(𝒏) space.

Given any 𝑇(𝑛)-time program 𝑀, 
is there always a way to reimplement 𝑀, so it uses ≪ 𝑇(𝑛) space?

Canonical Problem: Circuit Evaluation / Circuit Value Problem (CVP)

Given 𝐶, 𝑥 compute the output

On circuits of size 𝑠: 

• about 𝑠 time to solve CVP

• needs Ω 𝑠 space, to store 
intermediate gate values?

[PV’76, Borodin’77]
CVP is in 𝑂(𝑠/ log 𝑠) space

[HPV’75, PR’81, HLMW’86]

TIME[t] ⊆ SPACE[𝑡/ log 𝑡]

“Pebbling approach” with an
Ω(𝑡/ log 𝑡) lower bound 
[LT’79] (more later on this)

How space-efficiently can one simulate 
time-efficient computations?



Model of Computation: Multitape Turing Machine

Old model, but very robust!

Examples: CVP, Sorting, FFT are in 
TIME[𝑛 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)], 

𝑛3−𝜀-time matrix mult algorithms are in 
TIME[𝑛3−𝜀 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)], etc.

(in fact, two tapes suffice [HS’66])

Open Problem: find any problem 
solvable in 𝑂(𝑛)-time on RAMs with no

𝑂(𝑛 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛))-time MTM

𝑴

x

𝒙

• read/write 𝑘 cells in each step
• the 𝑘 tape heads can move 

left/right, in each step 

𝑘

⋮

TIME[𝑇] := problems solvable in 
𝑂(𝑇 𝑛 ) time on a MTM [HS’65]



Every MTM running in time 𝑇 has an equivalent MTM using 𝑂( 𝑇 𝑙𝑜𝑔 𝑇) space (!!)

(Now False) Conjecture: For all 𝜀 > 0, TIME[𝑇] ⊈ SPACE[𝑇1−𝜀]

[Sipser’86] Conjecture + Explicit Expanders ⇒ P = RP

(nowadays, we know [NW’94,IW’97,…] that we “only” need circuit lower bounds on time 
in order to achieve derandomization; we don’t need space lower bounds on time)

Corollary: CVP ∈ SPACE[ 𝑛 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 ]  

By diagonalization, we can conclude new lower bounds (towards 𝑃 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸):

Corollary: For all “nice” 𝑠 𝑛 ≥ 𝑛, SPACE[𝑠] ⊈ TIME[𝑠2/ log2(𝑠)]

Corollary: There is an explicit Π ∈ SPACE[𝑛] not in TIME[𝑛2/ log2 𝑛]

Can the Theorem be improved?

Proposition: If TIME[T] ⊆ SPACE[𝑇𝜀] for all 𝜀 > 0, then 𝑃 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸

Theorem: For all 𝑇:ℕ → ℕ with 𝑇 𝑛 ≥ 𝑛, 

TIME[𝑇] ⊆ SPACE[ 𝑇 log 𝑇]



Define a computation graph 𝐺𝑀,𝑥:

nodes: {0,1,… , 𝑇(𝑛)/𝑏}
each node represents a time interval: 𝑏 steps of time

edges: for 𝑖 < 𝑗, edge (𝑖, 𝑗) if “info computed in interval 𝑖 is 
needed to compute info in interval 𝑗”

∀𝑖, (𝑖 − 1, 𝑖) is an edge
need the last state from interval 𝑖 − 1, to start interval 𝑖

for 𝑖 < 𝑗, edge (𝑖, 𝑗) if some block is visited in intervals 
𝑖 and 𝑗 but is not visited in intervals 𝑖 + 1,… , 𝑗 − 1

Obs: during an interval, each tape has ≤ 2 blocks accessed

∀𝑖, indeg(𝑖) ≤ 2𝑘 + 1

Prior Work: TIME[𝑇] ⊆ SPACE[𝑇/ log 𝑇]

𝑴

𝒙

⋮

Given MTM 𝑀, input 𝑥 of length 𝑛
Partition the 𝑘 tapes of 𝑀 into 
blocks of 𝑏 cells 

𝑏

𝑘

For simplicity: 𝑇 𝑛 ≥ 𝑛2, 𝑏 ≈ 𝑇(𝑛)

𝑏

from 
blocks

from
state



computation graph 𝐺𝑀,𝑥 = (𝑉, 𝐸)
𝑉 = {0,1,… , 𝑇(𝑛)/𝑏}

for 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐸 iff “info computed in interval 𝑖 is 
needed to compute info in interval 𝑗” 

∀𝑖, indeg(𝑖) ≤ 2𝑘 + 1

Define strings with the info computed in each interval:

content(0): initial configuration of 𝑀 on 𝑥 [𝑂(𝑛) bits]

content(𝑖): info computed during interval 𝑖 [𝑂(𝑏) bits]

[state + head positions at end, tape blocks accessed]

Obs: given content(𝑖) for all 𝑖 with 𝑖, 𝑗 ∈ 𝐸, 
can compute content(𝑗) in 𝑂(𝑏) time

Goal: Determine content(𝑇(𝑛)/𝑏) 

[contains accept/reject state!]

Prior Work: TIME[𝑇] ⊆ SPACE[𝑇/ log 𝑇]

𝑴

𝒙

⋮

Given MTM 𝑀, input 𝑥 of length 𝑛
Partition the 𝑘 tapes of 𝑀 into 
blocks of 𝑏 cells 

𝑏

For simplicity: 𝑇 𝑛 ≥ 𝑛2, 𝑏 ≈ 𝑇(𝑛)

𝑏
𝑘



Prior Work: TIME[𝑇] ⊆ SPACE[𝑇/ log 𝑇]

Now we have a problem on DAGs:

Pebble Game: played on 𝑣-node graph
1. Can put pebble on source
2. Given pebbles on all 𝑖 with 𝑖, 𝑗 ∈ 𝐸, 

can put pebble on 𝑗
3. Can remove pebbles at any time
How many pebbles needed to put a 
pebble on the last node? [HPV’75,LT’79]
Θ(𝑣/ log 𝑣) for DAGs of 𝑂(1) indegree

Store only 𝑂(𝑇/𝑏)/log(𝑇/𝑏)) content 
strings at a time ⇒𝑂(𝑇/log(𝑇/𝑏)) space

computation graph 𝐺𝑀,𝑥 = (𝑉, 𝐸)
𝑉 = {0,1,… , 𝑇(𝑛)/𝑏}

for 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐸 iff “info computed in interval 𝑖 is 
needed to compute info in interval 𝑗” 

∀𝑖, indeg(𝑖) ≤ 2𝑘 + 1

Define strings with the info computed in each interval:

content(0): initial configuration of 𝑀 on 𝑥 [𝑂(𝑛) bits]

content(𝑖): info computed during interval 𝑖 [𝑂(𝑏) bits]

[state + head positions at end, tape blocks accessed]

Obs: given content(𝑖) for all 𝑖 with 𝑖, 𝑗 ∈ 𝐸, 
can compute content(𝑗) in 𝑂(𝑏) time

Goal: Determine content(𝑇(𝑛)/𝑏) 

[contains accept/reject state!]

0 1 2 3 4



⋯

Towards Low Space: The Tree Evaluation Problem (TEP) 
[Braverman-Cook-McKenzie-Santhanam-Wehr’09]

Parameters 𝑑, 𝑏, ℎ > 0.  Given: 𝑑-ary tree of height ℎ
Each inner node 𝑢 is labeled by 𝑓𝑢: 0,1

𝑑⋅𝑏 → 0,1 𝑏

[each 𝑓𝑢 is given as a table of length 2𝑑⋅𝑏]

Each leaf ℓ is labeled by a value 𝑎ℓ ∈ 0,1 𝑏 [𝑑ℎ values]

For an inner node 𝑢, if 𝑎𝑢 1, … , 𝑎𝑢 𝑑 are the values of the 
children of 𝑢, then value of 𝑢 is 𝑎𝑢 := 𝑓𝑢(𝑎𝑢 1, … , 𝑎𝑢 𝑑)

Goal: Find value of the root: 𝑎𝜀 ∈ 0,1 𝑏

Simple recursive algorithm:
TE(𝑣): If 𝑣 is a leaf, return 𝑎𝑣

For 𝑖 = 1,… , 𝑑, compute 𝐴𝑖 = TE(𝑣𝑖)
Return 𝑓𝑣 𝐴1, … , 𝐴𝑑 and erase 𝐴1, … , 𝐴𝑑

Takes 𝑂(ℎ ⋅ 𝑑 ⋅ 𝑏) space →𝑂(log2𝑁) for input length 𝑁

𝒇𝜺

𝒇𝟏 𝒇𝒅

⋱⋮ ⋮
⋯ ⋯

⋯⋯

1

2

ℎ

𝑎1⋯1 ∈ 0,1 𝑏 𝑎𝑑⋯𝑑 ∈ 0,1 𝑏

How much space?

[Braverman et al] showed LBs in 
restricted settings, conjectured 

TEP ∉ NL



Towards Low Space: The Tree Evaluation Problem (TEP) 
[Braverman-Cook-McKenzie-Santhanam-Wehr’09]

Parameters 𝑑, 𝑏, ℎ > 0.  Given: 𝑑-ary tree of height ℎ
Each leaf ℓ is labeled by a value 𝑎ℓ ∈ 0,1 𝑏

Each inner node 𝑢 is labeled by 𝑓𝑢: 0,1
𝑑⋅𝑏 → 0,1 𝑏

Goal: Find value of the root: 𝑎𝜀 ∈ 0,1 𝑏

Simple algorithm takes 𝑂(ℎ𝑑𝑏) space → stack of height ℎ

[Cook-Mertz’24] TEP in 𝑂(ℎ log 𝑑𝑏 + 𝑑𝑏) space!
Stack of height ℎ, with only 𝑂(log(𝑑𝑏)) bits on each level

𝒇𝜺

𝒇𝟏 𝒇𝒅

⋱⋮ ⋮

⋯

⋯ ⋯

⋯ ⋯⋯

1

2

ℎ

𝑎1⋯1 ∈ 0,1 𝑏 𝑎𝑑⋯𝑑 ∈ 0,1 𝑏

Key Idea: The simple algorithm allocates fresh space for each value computed at each level

Instead, XOR values into existing space! Algorithm XORs the value of 𝑢 into existing space, 
assuming an oracle that can XOR the values of 𝑢’s children into existing space.



Idea: Given time-𝑇 MTM 𝑀 and input 𝑥, reduce to (exp-sized) TEP instance

Assume we know 𝐺𝑀,𝑥 [either it’s stored in memory, or we can compute its edges efficiently]

Set 𝑑 ∶= 2𝑘 + 1, ℎ ∶= 1 + 𝑇(𝑛)/𝑏, and set 𝑏 so that for all 𝑖, |content(𝑖)| ≤ 𝑏

Extend Cook-Mertz for trees with ≤ 𝑑 children at each node, and max height ℎ

[Folklore] Boolean circuits of depth ℎ Boolean formulas of depth ℎ

Theorem: For 𝑇:ℕ → ℕ with 𝑇 𝑛 ≥ 𝑛2, TIME[𝑇] ⊆ SPACE[ 𝑇 ⋅ log(𝑇)]

↦

↦  Each gate is indexed 
by a path from a gate 

in the circuit to the 
output gate

This transformation works just as well for 
circuits and formulas with 𝑏-bit values on the wires

Computing content in 𝐺𝑀,𝑥 is evaluating a circuit over 𝑏-bit values

TEP ≡ Evaluating a formula over 𝒃-bit values of depth 𝒉 and fan-in 𝒅



Idea: Given time-𝑇 MTM 𝑀 and input 𝑥, reduce to (exp-sized) TEP instance

Assume we know 𝐺𝑀,𝑥 [either it’s stored in memory, or we can compute its edges efficiently]

Set 𝑑 ∶= 2𝑘 + 1, ℎ ∶= 1 + 𝑇(𝑛)/𝑏, and set 𝑏 so that for all 𝑖, |content(𝑖)| ≤ 𝑏

We can evaluate content(𝑇(𝑛)/𝑏) of 𝐺𝑀,𝑥 using the Cook-Mertz procedure!

Space of Cook-Mertz: 𝑂 𝑑 ⋅ 𝑏 + ℎ ⋅ log 𝑑 ⋅ 𝑏 ≤ 𝑂(𝑏 + (𝑇 log 𝑏)/𝑏)

set 𝑏 to minimize →𝑂( 𝑇 log 𝑇) space

BUT! We don’t know 𝑮𝑴,𝒙 …

Easiest fix: Program 𝑀 so that we can calculate all head positions quickly (in advance)

Def. 𝑀 is oblivious if ∀𝑛 and 𝑥 of length 𝑛, head movements of 𝑀 on 𝑥 only depend on 𝑛

Thm [HS’66,PF’79] For all MTM 𝑀 in 𝑇(𝑛) time, there’s an equivalent two-tape oblivious 
𝑀′ that runs in 𝑂(𝑇 𝑛 log 𝑇 𝑛 ) time. Given 𝑛, 𝑖 in binary, head positions of 𝑀′ at step 𝑖
can be computed in 𝒑𝒐𝒍𝒚(𝐥𝐨𝐠𝑻(𝒏)) time.  

Theorem: For 𝑇:ℕ → ℕ with 𝑇 𝑛 ≥ 𝑛2, TIME[𝑇] ⊆ SPACE[ 𝑇 ⋅ log(𝑇)]

→ Can calculate 𝐺𝑀′,𝑥! (But we lose a little)



Open Problems

• Extend to RAMs? (Show 𝑇𝐼𝑀𝐸𝑅𝐴𝑀 𝑇 ⊆ 𝑆𝑃𝐴𝐶𝐸(𝑇1−𝜀)?)

• Extend to Parallel Machines? (Show 𝑇𝐼𝑀𝐸 𝑇 ⊆ 𝐴𝑇𝐼𝑀𝐸(𝑇1−𝜀)?)
Would imply super-linear time lower bounds for problems like 
Quantified Boolean Formulas!

• 𝑇𝐼𝑀𝐸 𝑇 ⊆ 𝑆𝑃𝐴𝐶𝐸(𝑇0.5−𝜀)? This would resolve the first two!

Improve this bound for single-tape Turing machines!

• Barrier?

I’m very lucky that I found this reduction after Cook-Mertz, or I would
have definitely declared the reduction to be a “barrier”…

“You can’t solve Tree Eval in much less space, or you’d improve HPV…
…which we know you can’t do”

🧐



Thank you!

image courtesy of ChatGPT


