# Simulating Time With Square-Root Space



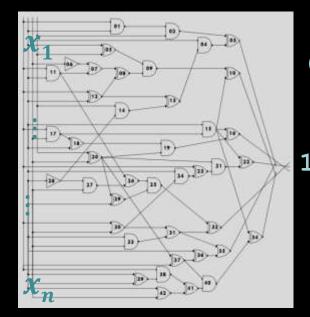
image courtesy of DALL-E

Ryan Williams, MIT and IAS (Princeton)

# How space-efficiently can one simulate time-efficient computations?

Every T(n)-time program will use no more than (about) T(n) space. Given any T(n)-time program M, is there always a way to reimplement M, so it uses  $\ll T(n)$  space?

#### **Canonical Problem:** Circuit Evaluation / Circuit Value Problem (CVP)



Given C, x compute the output

On circuits of size s:

- about s time to solve CVP
- needs  $\Omega(s)$  space, to store intermediate gate values?

[PV'76, Borodin'77]

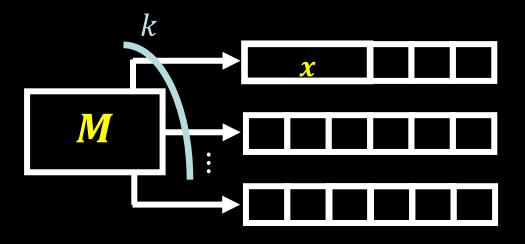
CVP is in  $O(s/\log s)$  space

[HPV'75, PR'81, HLMW'86]

 $\mathsf{TIME}[\mathsf{t}] \subseteq \mathsf{SPACE}[t/\log t]$ 

"Pebbling approach" with an  $\Omega(t/\log t)$  lower bound [LT'79] (more later on this)

# Model of Computation: Multitape Turing Machine



- read/write k cells in each step
- the k tape heads can move left/right, in each step

TIME[T] := problems solvable in O(T(n)) time on a MTM [HS'65]

Old model, but <u>very</u> robust!

Examples: CVP, Sorting, FFT are in TIME[ $n \cdot polylog(n)$ ],  $n^{3-\varepsilon}$ -time matrix mult algorithms are in TIME[ $n^{3-\varepsilon} \cdot polylog(n)$ ], etc. (in fact, <u>two tapes</u> suffice [HS'66])

Open Problem: find any problem solvable in O(n)-time on RAMs with no  $O(n \cdot polylog(n))$ -time MTM

# Theorem: For all $T: \mathbb{N} \to \mathbb{N}$ with $T(n) \ge n$ , $\mathsf{TIME}[T] \subseteq \mathsf{SPACE}[\sqrt{T \log T}]$

Every MTM running in time T has an equivalent MTM using  $O(\sqrt{T \log T})$  space (!!)

(Now False) Conjecture: For all  $\varepsilon > 0$ , TIME[T]  $\not\subseteq$  SPACE[ $T^{1-\varepsilon}$ ]

[Sipser'86] Conjecture + Explicit Expanders  $\Rightarrow$  P = RP

(nowadays, we know [NW'94,IW'97,...] that we "only" need <u>circuit lower bounds</u> on time in order to achieve derandomization; we don't need <u>space lower bounds</u> on time)

Corollary: CVP  $\in$  SPACE[ $\sqrt{n} \cdot polylog(n)$ ]

By diagonalization, we can conclude new lower bounds (towards  $P \neq PSPACE$ ):

Corollary: For all "nice"  $s(n) \ge n$ , SPACE[s]  $\nsubseteq$  TIME[ $s^2 / \log^2(s)$ ]

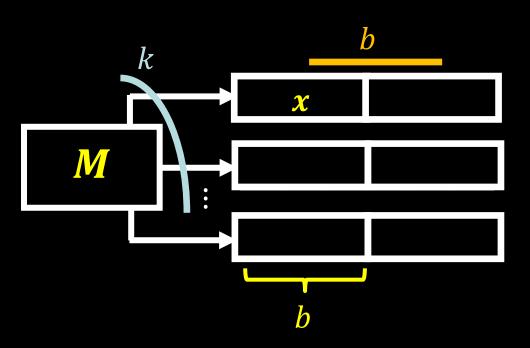
Corollary: There is an explicit  $\Pi \in SPACE[n]$  not in  $TIME[n^2/\log^2 n]$ 

Can the Theorem be improved?

<u>Proposition:</u> If TIME[T]  $\subseteq$  SPACE[ $T^{\varepsilon}$ ] for all  $\varepsilon > 0$ , then  $P \neq PSPACE$ 

## Prior Work: TIME[T] $\subseteq$ SPACE[T/ log T]

Given MTM M, input x of length nPartition the k tapes of M into **blocks** of b cells



For simplicity:  $T(n) \ge n^2$ ,  $b \approx \sqrt{T(n)}$ 

#### Define a computation graph $G_{M,x}$ :

nodes:  $\{0,1,...,T(n)/b\}$ 

each node represents a **time interval**: b steps of time

edges: for i < j, edge (i, j) if "info computed in interval i is needed to compute info in interval j"

 $\forall i, (i-1,i)$  is an edge

need the last state from interval i-1, to start interval i

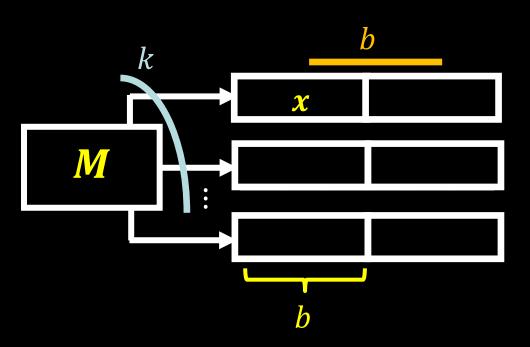
for i < j, edge (i, j) if some block is visited in intervals i and j but is not visited in intervals i + 1, ..., j - 1

Obs: during an interval, each tape has  $\leq 2$  blocks accessed

$$\forall i$$
, indeg(i)  $\leq 2k + 1$  from from blocks state

## Prior Work: TIME[T] $\subseteq$ SPACE[T/ log T]

Given MTM M, input x of length nPartition the k tapes of M into **blocks** of b cells



For simplicity:  $T(n) \ge n^2$ ,  $b \approx \sqrt{T(n)}$ 

computation graph  $G_{M,x} = (V, E)$   $V = \{0,1,...,T(n)/b\}$ for i < j,  $(i,j) \in E$  iff "info computed in interval i is needed to compute info in interval j"  $\forall i, \text{ indeg}(i) \leq 2k+1$ Define strings with the info computed in each interval:

content(0): initial configuration of M on x [O(n) bits] content(i): info computed during interval i [O(b) bits] [state + head positions at end, tape blocks accessed]

Obs: given content(i) for all i with  $(i,j) \in E$ , can compute content(j) in O(b) time

Goal: Determine content(T(n)/b)

[contains accept/reject state!]

## Prior Work: TIME[T] $\subseteq$ SPACE[T/ log T]

Now we have a problem on DAGs:



Pebble Game: played on *v*-node graph

- 1. Can put pebble on source
- 2. Given pebbles on all i with  $(i, j) \in E$ , can put pebble on j
- 3. Can remove pebbles at any time How many pebbles needed to put a pebble on the last node? [HPV'75,LT'79]  $\Theta(v/\log v)$  for DAGs of O(1) indegree Store only  $O(T/b)/\log(T/b)$  content strings at a time  $\Rightarrow O(T/\log(T/b))$  space

```
computation graph G_{M,x} = (V, E)
```

 $V = \{0,1,...,T(n)/b\}$ 

for i < j,  $(i, j) \in E$  iff "info computed in interval i is needed to compute info in interval j"

 $\forall i$ , indeg $(i) \leq 2k+1$ 

Define strings with the info computed in each interval:

content(0): initial configuration of M on x [O(n) bits]

content(i): info computed during interval i [O(b) bits]

[state + head positions at end, tape blocks accessed]

Obs: given content(i) for all i with  $(i,j) \in E$ , can compute content(j) in O(b) time

Goal: Determine content(T(n)/b)

[contains accept/reject state!]

### Towards Low Space: The Tree Evaluation Problem (TEP)

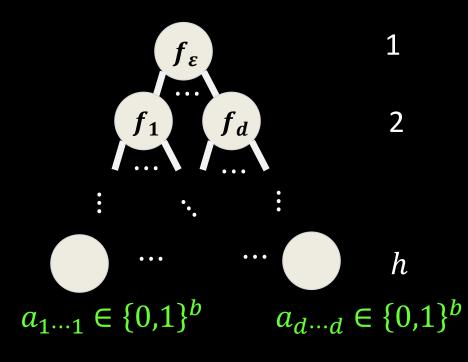
[Braverman-Cook-McKenzie-Santhanam-Wehr'09]

Parameters d, b, h > 0. Given: d-ary tree of height h Each inner node u is labeled by  $f_u : \{0,1\}^{d \cdot b} \to \{0,1\}^b$  [each  $f_u$  is given as a table of length  $2^{d \cdot b}$ ] Each leaf  $\ell$  is labeled by a value  $a_{\ell} \in \{0,1\}^b$  [ $d^h$  values] For an inner node u, if  $a_{u \mid 1}, \dots, a_{u \mid d}$  are the values of the children of u, then value of u is  $a_u := f_u(a_{u \mid 1}, \dots, a_{u \mid d})$ 

Goal: Find value of the root:  $a_{\varepsilon} \in \{0,1\}^b$ 

Simple recursive algorithm:

 $\begin{aligned} \text{TE}(v) \colon &\text{If } v \text{ is a leaf, return } a_v \\ &\text{For } i = 1, \dots, d \text{, compute } A_i = \text{TE}(v_i) \\ &\text{Return } f_v(A_1, \dots, A_d) \text{ and erase } A_1, \dots, A_d \end{aligned}$   $\text{Takes } O(h \cdot d \cdot b) \text{ space } \rightarrow O(\log^2 N) \text{ for input length } N$ 



#### How much space?

[Braverman et al] showed LBs in restricted settings, conjectured TEP ∉ NL

### Towards Low Space: The Tree Evaluation Problem (TEP)

[Braverman-Cook-McKenzie-Santhanam-Wehr'09]

Parameters d, b, h > 0. Given: d-ary tree of height h

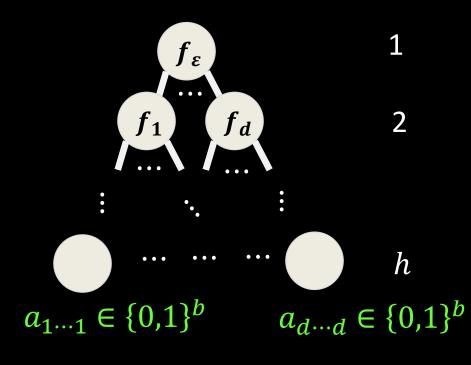
Each leaf  $\ell$  is labeled by a value  $a_{\ell} \in \{0,1\}^b$ 

Each inner node u is labeled by  $f_u: \{0,1\}^{d \cdot b} \to \{0,1\}^b$ 

Goal: Find value of the root:  $a_{\varepsilon} \in \{0,1\}^b$ 

Simple algorithm takes O(hdb) space  $\rightarrow$  stack of height h

[Cook-Mertz'24] TEP in  $O(h \log(db) + db)$  space! Stack of height h, with only  $O(\log(db))$  bits on each level



Key Idea: The simple algorithm allocates fresh space for each value computed at each level

Instead, XOR values into existing space! Algorithm XORs the value of u into existing space, assuming an oracle that can XOR the values of u's children into existing space.

#### Theorem: For $T: \mathbb{N} \to \mathbb{N}$ with $T(n) \ge n^2$ , TIME[T] $\subseteq$ SPACE[ $\sqrt{T} \cdot \log(T)$ ]

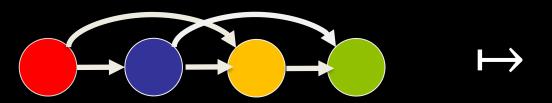
Idea: Given time-T MTM M and input x, reduce to (exp-sized) TEP instance

Assume we know  $G_{M,x}$  [either it's stored in memory, or we can compute its edges efficiently]

Set d := 2k + 1, h := 1 + T(n)/b, and set b so that for all i, |content(i)|  $\leq b$ 

Extend Cook-Mertz for trees with  $\leq d$  children at each node, and max height h

[Folklore] Boolean circuits of depth  $h \mapsto Boolean$  formulas of depth h



This transformation works just as well for circuits and formulas with b-bit values on the wires

Computing content in  $G_{M,x}$  is evaluating a circuit over b-bit values

TEP  $\equiv$  Evaluating a formula over b-bit values of depth h and fan-in d

← Each gate is indexed by a path from a gate in the circuit to the output gate

#### Theorem: For $T: \mathbb{N} \to \mathbb{N}$ with $T(n) \ge n^2$ , TIME $[T] \subseteq SPACE[\sqrt{T} \cdot \log(T)]$

Idea: Given time-T MTM M and input x, reduce to (exp-sized) TEP instance

Assume we know  $G_{M,x}$  [either it's stored in memory, or we can compute its edges efficiently]

Set d := 2k + 1, h := 1 + T(n)/b, and set b so that for all i,  $|content(i)| \le b$ We can evaluate content(T(n)/b) of  $G_{M,x}$  using the Cook-Mertz procedure!

Space of Cook-Mertz:  $O(d \cdot b + h \cdot \log(d \cdot b)) \le O(b + (T \log b)/b)$ set b to minimize  $\to O(\sqrt{T \log T})$  space

#### BUT! We don't know $G_{M,x}$ ...

Easiest fix: Program M so that we can calculate all head positions quickly (in advance) Def. M is oblivious if  $\forall n$  and x of length n, head movements of M on x only depend on n Thm [HS'66,PF'79] For all MTM M in T(n) time, there's an **equivalent** two-tape oblivious M' that runs in  $O(T(n) \log T(n))$  time. Given n, i in binary, head positions of M' at step i can be computed in  $poly(\log T(n))$  time.  $\rightarrow$  Can calculate  $G_{M',x}$ ! (But we lose a little)

## Open Problems

- Extend to RAMs? (Show  $TIME_{RAM}(T) \subseteq SPACE(T^{1-\varepsilon})$ ?)
- Extend to Parallel Machines? (Show  $TIME(T) \subseteq ATIME(T^{1-\varepsilon})$ ?) Would imply super-linear time lower bounds for problems like Quantified Boolean Formulas!
- $TIME(T) \subseteq SPACE(T^{0.5-\varepsilon})$ ? This would resolve the first two! Improve this bound for single-tape Turing machines!
- Barrier?

I'm very lucky that I found this reduction after Cook-Mertz, or I would have definitely declared the reduction to be a "barrier"...

"You can't solve Tree Eval in much less space, or you'd improve HPV...
...which we know you can't do"

