
From text indexing to regular language indexing

One FLAT World Seminar

November 26, 2025

Nicola Prezza, Ca’ Foscari University of Venice, Italy



Overview

1. Sorting and indexing

2. Wheeler automata / languages

3. p-sortable automata / languages 
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Sorting and indexing
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Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

4 9 12 42 78
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Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

4 9 12 42 78

Benefits: the sorted list is

● Searchable (binary search)
● More compressible (store just the differences between consecutive integers)
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Sorting

Not just integers. Other example: suffixes of a string
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Sorting

Not just integers. Other example: suffixes of a string
The Suffix Array (SA)

a b a b d c
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1     2    3     4    5    6

SA

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string searches." siam Journal on Computing 22.5 (1993): 935-948.
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Text indexing

Not just integers. Other example: suffixes of a string
The Suffix Array (SA)

a b a b d c
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1     2    3     4    5    6

Indexing and compression still work!

● Indexing: suffixies prefixed by a word (e.g. “ab”) form a range. Can be found by binary search on SA.

SA

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string searches." siam Journal on Computing 22.5 (1993): 935-948.
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Text indexing

Indexing and compression still work!

● Indexing: suffixies prefixed by a word (e.g. “ab”) form a range. Can be found by binary search on SA.
● SA can be compressed while still supporting fast pattern matching. 
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Not just integers. Other example: suffixes of a string
The Suffix Array (SA)

a b a b d c

1     2    3     4    5    6

SA

Roberto Grossi, Jeffrey Scott Vitter, 2000. Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching. STOC.
Paolo Ferragina, Giovanni Manzini, 2000. Opportunistic Data Structures with Applications. FOCS.
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Text indexing

Observations:

● A string is a very simple kind of NFA
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Text indexing

Observations:

● A string is a very simple kind of NFA

● “pattern matching on NFA” ≡ find states reached by given string (“ab” in the example)
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Text indexing

Observations:

● A string is a very simple kind of NFA

● “pattern matching on NFA” ≡ find states reached by given string (“ab” in the example)

● Membership ≡ pattern matching from the source
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Text indexing

Observations:

● A string is a very simple kind of NFA

● “pattern matching on NFA” ≡ find states reached by given string (“ab” in the example)

● Membership ≡ pattern matching from the source

Can we generalize suffix sorting to regular languages? 
Ideally: queries in O(|P|) time, where P is the query string.
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Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

● Count: given string P, return the number of states reached by a path labeled P
● Locate: given string P, return the states reached by a path labeled P
● Membership: given string P, is a final state reached by a path labeled P starting in the source?
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Example: 
● count(“T”) = 2, locate(“T”) = {1,3}
● count(“TT”) = 1, locate(“T”) = {1}
● count(“CT”) = 1, locate(“T”) = {3}
● membership(“TTT”) = true
● membership(“C”) = false
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Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

● Count: given string P, return the number of states reached by a path labeled P
● Locate: given string P, return the states reached by a path labeled P
● Membership: given string P, is a final state reached by a path labeled P starting in the source?

16

Example: 
● count(“T”) = 2, locate(“T”) = {1,3}
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Applications

● Regular expression matching (e.g. linux grep) 
(matching a regex on text)
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Applications

● Regular expression matching (e.g. linux grep) 
(matching a regex on text)

● Graph databases (e.g. regular path queries)
(matching a regex on a graph)
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Applications

● Regular expression matching (e.g. linux grep) 
(matching a regex on text)

● Graph databases (e.g. regular path queries)
(matching a regex on a graph)

● Bioinformatics (pattern matching on pan-genome graphs). 
(matching a text on graph)
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Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

● Matching a regular expression E on text T requires Ω(|E| • |T|) time [Backurs, Indyk FOCS ‘16]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer 
Science (FOCS). IEEE, 2016.

20



Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

● Matching a regular expression E on text T requires Ω(|E| • |T|) time [Backurs, Indyk FOCS ‘16]

● Regular path queries (emptiness) require quadratic time: size of graph times size of NFA for the regex 
[Casel, Schmid, LMCS’23]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer 
Science (FOCS). IEEE, 2016.

Katrin Casel, Markus L. Schmid. "Fine-grained complexity of regular path queries." Logical Methods in Computer Science 19 (2023).
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Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

● Matching a regular expression E on text T requires Ω(|E| • |T|) time [Backurs, Indyk FOCS ‘16]

● Regular path queries (emptiness) require quadratic time: size of graph times size of NFA for the regex 
[Casel, Schmid, LMCS’23]

● Solving pattern matching queries on labeled graphs requires Ω(m • n) time, where m is the graph’s size 
and n is the query length [Equi et al. TALG’23]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer 
Science (FOCS). IEEE, 2016.

Katrin Casel, Markus L. Schmid. "Fine-grained complexity of regular path queries." Logical Methods in Computer Science 19 (2023).

Massimo Equi, Veli Mäkinen, Alexandru Tomescu, Roberto Grossi (2023). On the complexity of string matching for graphs. ACM Transactions on 
Algorithms, 19(3), 1-25.
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Not hard on all NFA!

Although these problems are hard in general, for some NFA they are easy: paths, trees, de Bruijn graphs, …

Next slides: what is the most general class of “indexable/sortable” NFA? 

● The class of Wheeler NFA / languages

● Generalization to arbitrary NFA
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Wheeler automata
and

Wheeler languages
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Myhill-Nerode relation
● We take our first steps from a central object in finite automata theory: the MN equivalence relation
● Intuition: we will turn the MN relation into an order, and use it to index the NFA
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Myhill-Nerode relation
● We take our first steps from a central object in finite automata theory: the MN equivalence relation
● Intuition: we will turn the MN relation into an order, and use it to index the NFA
● MN equivalence between states: coarsest equivalence relation satisfying* :
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* For simplicity: (1) take all states to be final. (2) nonexistent transitions go into a (virtual) non-final sink.
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● MN equivalence between states: coarsest equivalence relation satisfying* :
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Switching to an order
… but to index, we need an order. What if we turn ≡ (equivalence relation) into a total order ≤?

28

Equivalence relation ≡

reflexive:      x ≡ x 
symmetric:   x ≡ y   ⇔    y ≡ x
transitive:     x ≡ y  ∧ y ≡ z  ⇒  x ≡ z

Total order ≤

reflexive:         x ≤ x
antisymmetric: x ≤ y ∧ y ≤ x ⇒   x = y
transitive:        x ≤ y ∧ y ≤ z  ⇒  x ≤ z
strongly connected: x ≤ y  ∨  y ≤ x



Switching to an order
… but to index, we need an order. What if we turn ≡ (equivalence relation) into a total order ≤?
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Ordered Automata

30

* distinction between final/non final states does not matter in this definition. We allow incomplete NFA.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)
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We obtain: 

Def: ordered automaton (OA)
An OA is a NFA for which there exists a total order ≤ satisfying: 



Ordered Automata

31

* distinction between final/non final states does not matter in this definition. We allow incomplete NFA.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)
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We obtain: 

Def: ordered automaton (OA)
An OA is a NFA for which there exists a total order ≤ satisfying: 

Such a total order does not always exist!



Ordered Automata
● Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.
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Ordered Automata
● Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

● However, OA are not good enough for indexing: states reached by the same letter are not necessarily 
contiguous in the order. We miss a base case! let’s add it …
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Ordered Automata
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Wheeler Automata
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Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the 
following two axioms: 
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Wheeler Automata
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Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
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Wheeler Automata
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Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
** Axiom 1 implies input consistency: all incoming edges of a given state bear the same label. Not restrictive. 

Def: Wheeler Automaton (WNFA)
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Wheeler Automata
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Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
** Axiom 1 implies input consistency: all incoming edges of a given state bear the same label. Not restrictive. 
*** Note: WNFA ⊂ OA   ⇒  Wheeler languages are star-free

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the 
following two axioms: 
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Wheeler Automata
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Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the 
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Wheeler Automata
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Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

Axiom (1) makes things much more interesting w.r.t. Ordered Automata! Next slides:

● Efficient encoding
● Linear-time queries
● Wheeler languages

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the 
following two axioms: 
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Bipartite representation

Useful visualization of the Wheeler order: bipartite representation.

● Build a bipartite graph: two copies of the nodes, sorted by the candidate order.
● Same edges of the input NFA, but drawn left-to-right. 
● The order is Wheeler ⇔ Same-letter edges must not cross.
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Efficient encoding

⇒ we can store the WNFA in O(1) bits per edge*! just store out-going labels and in-degrees

*assuming constant-size alphabet for simplicity
42
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Pattern matching
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Also:

same-letter edges must not cross 
⇒ 
Nodes reached by a given string P form a range in the total order



Pattern matching
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Also:

same-letter edges must not cross 
⇒ 
Nodes reached by a given string P form a range in the total order

Consequences: 

● WNFAs generalize known indexes on strings, trees, de 
Bruijn graphs…

● Indexed pattern matching/membership in optimal O(|P|) 
time



Pattern matching
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Wheeler languages

minimum DFA for L = TT* | CT
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Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in  co-lex order
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Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in  co-lex order ≡ Wheeler language 

48[1] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.



Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in  co-lex order ≡ Wheeler language 
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Theorem [1] Myhill-Nerode theorem for W. languages. The following are 
equivalent:

1. A regular language L is Wheeler 
2. L is recognized by a Wheeler NFA
3. L is recognized by a Wheeler DFA
4. The Myhill-Nerode equivalence classes of L form a finite number of 

intervals in co-lex order.

[1] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.



Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in  co-lex order ≡ Wheeler language 
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Theorem [1] Myhill-Nerode theorem for W. languages. The following are 
equivalent:

1. A regular language L is Wheeler 
2. L is recognized by a Wheeler NFA
3. L is recognized by a Wheeler DFA
4. The Myhill-Nerode equivalence classes of L form a finite number of 

intervals in co-lex order.

[1] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

In fact, given a WNFA we can always 
build an equivalent WDFA of at most 
twice the size!



Overview of algorithmic results
on Wheeler languages
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Overview of algorithmic results
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NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

min. equivalent  
WDFA

if L(A) is W

equivalent sorted 
WNFA

if L(A) is W

is L(A) Wheeler?

Is A Wheeler?

inputoutput

m = size of input A
M = size of output



Overview of algorithmic results
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[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2]

min. equivalent  
WDFA

if L(A) is W PSPACE-H [1]

equivalent sorted 
WNFA

if L(A) is W

is L(A) Wheeler? PSPACE-C [1]

Is A Wheeler? NP-C [2]

inputoutput

m = size of input A
M = size of output



Overview of algorithmic results
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[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2)  [3]

min. equivalent  
WDFA

if L(A) is W PSPACE-H [1]
?

equivalent sorted 
WNFA

if L(A) is W

is L(A) Wheeler? PSPACE-C [1]

Is A Wheeler? NP-C [2] O(m2)  [3]

inputoutput

m = size of input A
M = size of output



Overview of algorithmic results
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[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.
[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2)  [3] O(m)  [3]

min. equivalent  
WDFA

if L(A) is W PSPACE-H [1]
?

O(M log M)
[ongoing]

equivalent sorted 
WNFA

if L(A) is W

is L(A) Wheeler? PSPACE-C [1] Θ(m2) [4]

Is A Wheeler? NP-C [2] O(m2)  [3] O(m)  [3]

inputoutput

m = size of input A
M = size of output



Overview of algorithmic results

56

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.
[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023
[5] Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, Nicola Prezza. Sorting Finite Automata via Partition 
Refinement. ESA 2023.
[6] Jarno Alanko, Nicola Cotumaccio, Nicola Prezza. Linear-time Minimization of Wheeler DFAs. DCC 2022.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2)  [3] O(m)  [3] NP-C [2]

min. equivalent  
WDFA

if L(A) is W PSPACE-H [1]
?

O(M log M)
[ongoing]

polytime [3,6]

equivalent sorted 
WNFA

if L(A) is W

O(m log m) [5]

is L(A) Wheeler? PSPACE-C [1] Θ(m2) [4]
trivial

Is A Wheeler? NP-C [2] O(m2)  [3] O(m)  [3]

inputoutput

m = size of input A
M = size of output



Overview of algorithmic results
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[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.
[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023
[5] Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, Nicola Prezza. Sorting Finite Automata via Partition 
Refinement. ESA 2023.
[6] Jarno Alanko, Nicola Cotumaccio, Nicola Prezza. Linear-time Minimization of Wheeler DFAs. DCC 2022.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2)  [3] O(m)  [3] NP-C [2] O(m)  [3]

min. equivalent  
WDFA

if L(A) is W PSPACE-H [1]
?

O(M log M)
[ongoing]

polytime [3,6] O(m) [6]

equivalent sorted 
WNFA

if L(A) is W

O(m log m) [5]
O(m)  [3]

is L(A) Wheeler? PSPACE-C [1] Θ(m2) [4]
trivial

Is A Wheeler? NP-C [2] O(m2)  [3] O(m)  [3]

inputoutput

m = size of input A
M = size of output



Generalizing:
p-sortable automata and languages

58



Searching a partially-ordered set

Classic algorithmic result: 

Given a set of objects and a partial order < on the set such that width(<) = p, then:

● Searching the set requires at least p log (n/p) operations

● There exists a data structure supporting search in time O(p log (n/p))

Intuition: decompose < into p totally-sorted chains (Dilworth’s theorem), run binary search on each chain. 

59



Searching a partially-ordered set

Classic algorithmic result: 

Given a set of objects and a partial order < on the set such that width(<) = p, then:

● Searching the set requires at least p log (n/p) operations

● There exists a data structure supporting search in time O(p log (n/p))

Intuition: decompose < into p totally-sorted chains (Dilworth’s theorem), run binary search on each chain. 
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Hasse 
diagram of <

width(<) = 2

A chain decomposition 
into p=2 chains

      <

      <          <



Generalization to arbitrary NFA: co-lex orders
For arbitrary NFAs: same idea of the Wheeler case, but do not require that < is total.
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Generalization to arbitrary NFA: co-lex orders

sort

62

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

For arbitrary NFAs: same idea of the Wheeler case, but do not require that < is total.

Any NFA admits a partial co-lex order of its nodes. 
We are interested in a minimum-width one (Wheeler NFA are the case width=1)



co-lex orders

A possible chain partitioning (yellow, blue) 
of the partial order.
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co-lex orders

A possible chain partitioning (yellow, blue) 
of the partial order.

Indexing ≡ states reached by any string (in 
the example, “C”) always form a convex set 
in the partial order.
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p  
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p  ⇒ powerset construction 
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p  ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p   *

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p  ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p   *

● NFA compression: log(p) + O(1) bits per edge ( rather than O(log n) )
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p  ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p   *

● NFA compression: log(p) + O(1) bits per edge ( rather than O(log n) )

● NFA membership / pattern matching: O(p2 loglog p) time per character (rather than graph’s size)
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co-lex orders
Let n = number of states. 

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p  ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p   *

● NFA compression: log(p) + O(1) bits per edge ( rather than O(log n) )

● NFA membership / pattern matching: O(p2 loglog p) time per character (rather than graph’s size)

● Fast index construction with state-of-the-art algorithms. 
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