
From text indexing to regular language indexing

One FLAT World Seminar

November 26, 2025

Nicola Prezza, Ca’ Foscari University of Venice, Italy

Overview

1. Sorting and indexing

2. Wheeler automata / languages

3. p-sortable automata / languages

2

Sorting and indexing

3

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

4 9 12 42 78

4

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

4 9 12 42 78

Benefits: the sorted list is

● Searchable (binary search)
● More compressible (store just the differences between consecutive integers)

5

Sorting

Not just integers. Other example: suffixes of a string

6

a b a b d c

a b a b d c

a b d c

b a b d c

b d c

c

d c

Sorting

Not just integers. Other example: suffixes of a string
The Suffix Array (SA)

a b a b d c

7

1 2 3 4 5 6

SA

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string searches." siam Journal on Computing 22.5 (1993): 935-948.

a b a b d c

a b d c

b a b d c

b d c

c

d c

1

3

2

4

6

5

Text indexing

Not just integers. Other example: suffixes of a string
The Suffix Array (SA)

a b a b d c

8

1 2 3 4 5 6

Indexing and compression still work!

● Indexing: suffixies prefixed by a word (e.g. “ab”) form a range. Can be found by binary search on SA.

SA

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string searches." siam Journal on Computing 22.5 (1993): 935-948.

a b a b d c

a b d c

b a b d c

b d c

c

d c

1

3

2

4

6

5

Text indexing

Indexing and compression still work!

● Indexing: suffixies prefixed by a word (e.g. “ab”) form a range. Can be found by binary search on SA.
● SA can be compressed while still supporting fast pattern matching.

9

Not just integers. Other example: suffixes of a string
The Suffix Array (SA)

a b a b d c

1 2 3 4 5 6

SA

Roberto Grossi, Jeffrey Scott Vitter, 2000. Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching. STOC.
Paolo Ferragina, Giovanni Manzini, 2000. Opportunistic Data Structures with Applications. FOCS.

a b a b d c

a b d c

b a b d c

b d c

c

d c

1

3

2

4

6

5

Text indexing

Observations:

● A string is a very simple kind of NFA

10

a b a b d c

Text indexing

Observations:

● A string is a very simple kind of NFA

● “pattern matching on NFA” ≡ find states reached by given string (“ab” in the example)

11

a b a b d c

Text indexing

Observations:

● A string is a very simple kind of NFA

● “pattern matching on NFA” ≡ find states reached by given string (“ab” in the example)

● Membership ≡ pattern matching from the source

12

a b a b d c

Text indexing

Observations:

● A string is a very simple kind of NFA

● “pattern matching on NFA” ≡ find states reached by given string (“ab” in the example)

● Membership ≡ pattern matching from the source

Can we generalize suffix sorting to regular languages?
Ideally: queries in O(|P|) time, where P is the query string.

13

a b a b d c

Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

● Count: given string P, return the number of states reached by a path labeled P
● Locate: given string P, return the states reached by a path labeled P
● Membership: given string P, is a final state reached by a path labeled P starting in the source?

14

Example:
● count(“T”) = 2, locate(“T”) = {1,3}
● count(“TT”) = 1, locate(“T”) = {1}
● count(“CT”) = 1, locate(“T”) = {3}
● membership(“TTT”) = true
● membership(“C”) = false

Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

● Count: given string P, return the number of states reached by a path labeled P
● Locate: given string P, return the states reached by a path labeled P
● Membership: given string P, is a final state reached by a path labeled P starting in the source?

15

Example:
● count(“T”) = 2, locate(“T”) = {1,3}
● count(“TT”) = 1, locate(“T”) = {1}
● count(“CT”) = 1, locate(“T”) = {3}
● membership(“TTT”) = true
● membership(“C”) = false

Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

● Count: given string P, return the number of states reached by a path labeled P
● Locate: given string P, return the states reached by a path labeled P
● Membership: given string P, is a final state reached by a path labeled P starting in the source?

16

Example:
● count(“T”) = 2, locate(“T”) = {1,3}
● count(“TT”) = 1, locate(“T”) = {1}
● count(“CT”) = 1, locate(“T”) = {3}
● membership(“TTT”) = true
● membership(“C”) = false

Applications

● Regular expression matching (e.g. linux grep)
(matching a regex on text)

17

Applications

● Regular expression matching (e.g. linux grep)
(matching a regex on text)

● Graph databases (e.g. regular path queries)
(matching a regex on a graph)

18

Applications

● Regular expression matching (e.g. linux grep)
(matching a regex on text)

● Graph databases (e.g. regular path queries)
(matching a regex on a graph)

● Bioinformatics (pattern matching on pan-genome graphs).
(matching a text on graph)

19

Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

● Matching a regular expression E on text T requires Ω(|E| • |T|) time [Backurs, Indyk FOCS ‘16]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016.

20

Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

● Matching a regular expression E on text T requires Ω(|E| • |T|) time [Backurs, Indyk FOCS ‘16]

● Regular path queries (emptiness) require quadratic time: size of graph times size of NFA for the regex
[Casel, Schmid, LMCS’23]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016.

Katrin Casel, Markus L. Schmid. "Fine-grained complexity of regular path queries." Logical Methods in Computer Science 19 (2023).

21

Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

● Matching a regular expression E on text T requires Ω(|E| • |T|) time [Backurs, Indyk FOCS ‘16]

● Regular path queries (emptiness) require quadratic time: size of graph times size of NFA for the regex
[Casel, Schmid, LMCS’23]

● Solving pattern matching queries on labeled graphs requires Ω(m • n) time, where m is the graph’s size
and n is the query length [Equi et al. TALG’23]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016.

Katrin Casel, Markus L. Schmid. "Fine-grained complexity of regular path queries." Logical Methods in Computer Science 19 (2023).

Massimo Equi, Veli Mäkinen, Alexandru Tomescu, Roberto Grossi (2023). On the complexity of string matching for graphs. ACM Transactions on
Algorithms, 19(3), 1-25.

22

Not hard on all NFA!

Although these problems are hard in general, for some NFA they are easy: paths, trees, de Bruijn graphs, …

Next slides: what is the most general class of “indexable/sortable” NFA?

● The class of Wheeler NFA / languages

● Generalization to arbitrary NFA

23

Wheeler automata
and

Wheeler languages

24

Myhill-Nerode relation
● We take our first steps from a central object in finite automata theory: the MN equivalence relation
● Intuition: we will turn the MN relation into an order, and use it to index the NFA

25

Myhill-Nerode relation
● We take our first steps from a central object in finite automata theory: the MN equivalence relation
● Intuition: we will turn the MN relation into an order, and use it to index the NFA
● MN equivalence between states: coarsest equivalence relation satisfying* :

26

u'

v’

a

a
⇒ u’≡ v’

u

v

 ≡

* For simplicity: (1) take all states to be final. (2) nonexistent transitions go into a (virtual) non-final sink.

Myhill-Nerode relation
● We take our first steps from a central object in finite automata theory: the MN equivalence relation
● Intuition: we will turn the MN relation into an order, and use it to index the NFA
● MN equivalence between states: coarsest equivalence relation satisfying* :

27

u'

v’

a

a
⇒ u’≡ v’

u

v

 ≡

* For simplicity: (1) take all states to be final. (2) nonexistent transitions go into a (virtual) non-final sink.

q1

q2

q3

a

a

b

a

b

Switching to an order
… but to index, we need an order. What if we turn ≡ (equivalence relation) into a total order ≤?

28

Equivalence relation ≡

reflexive: x ≡ x
symmetric: x ≡ y ⇔ y ≡ x
transitive: x ≡ y ∧ y ≡ z ⇒ x ≡ z

Total order ≤

reflexive: x ≤ x
antisymmetric: x ≤ y ∧ y ≤ x ⇒ x = y
transitive: x ≤ y ∧ y ≤ z ⇒ x ≤ z
strongly connected: x ≤ y ∨ y ≤ x

Switching to an order
… but to index, we need an order. What if we turn ≡ (equivalence relation) into a total order ≤?

29

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Ordered Automata

30

* distinction between final/non final states does not matter in this definition. We allow incomplete NFA.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

We obtain:

Def: ordered automaton (OA)
An OA is a NFA for which there exists a total order ≤ satisfying:

Ordered Automata

31

* distinction between final/non final states does not matter in this definition. We allow incomplete NFA.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

q1

q2

q3

a

a

b

a

b

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

We obtain:

Def: ordered automaton (OA)
An OA is a NFA for which there exists a total order ≤ satisfying:

Such a total order does not always exist!

Ordered Automata
● Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

32
Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

Ordered Automata
● Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

● However, OA are not good enough for indexing: states reached by the same letter are not necessarily
contiguous in the order. We miss a base case! let’s add it …

33
Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Ordered Automata
● Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

● However, OA are not good enough for indexing: states reached by the same letter are not necessarily
contiguous in the order. We miss a base case! let’s add it …

34
Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Wheeler Automata

35
Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the
following two axioms:

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Wheeler Automata

36
Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the
following two axioms:

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Wheeler Automata

37
Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
** Axiom 1 implies input consistency: all incoming edges of a given state bear the same label. Not restrictive.

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the
following two axioms:

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Wheeler Automata

38
Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
** Axiom 1 implies input consistency: all incoming edges of a given state bear the same label. Not restrictive.
*** Note: WNFA ⊂ OA ⇒ Wheeler languages are star-free

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the
following two axioms:

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Wheeler Automata

39
Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the
following two axioms:

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Wheeler Automata

40
Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

Axiom (1) makes things much more interesting w.r.t. Ordered Automata! Next slides:

● Efficient encoding
● Linear-time queries
● Wheeler languages

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order ≤ of its states satisfying the
following two axioms:

u

v

a

b
⇒ u<v

u'

v’

a

a
⇒ u’≤ v’

u

v

 ≤

Bipartite representation

Useful visualization of the Wheeler order: bipartite representation.

● Build a bipartite graph: two copies of the nodes, sorted by the candidate order.
● Same edges of the input NFA, but drawn left-to-right.
● The order is Wheeler ⇔ Same-letter edges must not cross.

41

q1

s

q3

q2

q1

s

q3

q2

a

a

a

b

b

b

Efficient encoding

⇒ we can store the WNFA in O(1) bits per edge*! just store out-going labels and in-degrees

*assuming constant-size alphabet for simplicity
42

q1

s

q3

q2

q1

s

q3

q2

a

a

a

b

b

b

{a,b}

{a}

{b}

{a,b}

0

1

2

3

Pattern matching

43

q1

s

q3

q2

q1

s

q3

q2

a

a

a

b

b

b

Also:

same-letter edges must not cross
⇒
Nodes reached by a given string P form a range in the total order

Pattern matching

44

q1

s

q3

q2

q1

s

q3

q2

a

a

a

b

b

b

Also:

same-letter edges must not cross
⇒
Nodes reached by a given string P form a range in the total order

Consequences:

● WNFAs generalize known indexes on strings, trees, de
Bruijn graphs…

● Indexed pattern matching/membership in optimal O(|P|)
time

Pattern matching

45

Wheeler languages

minimum DFA for L = TT* | CT

46

Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in co-lex order

47

Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in co-lex order ≡ Wheeler language

48[1] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in co-lex order ≡ Wheeler language

49

Theorem [1] Myhill-Nerode theorem for W. languages. The following are
equivalent:

1. A regular language L is Wheeler
2. L is recognized by a Wheeler NFA
3. L is recognized by a Wheeler DFA
4. The Myhill-Nerode equivalence classes of L form a finite number of

intervals in co-lex order.

[1] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

Wheeler languages

minimum DFA for L = TT* | CT
Finite number of Myhill-Nerode intervals in co-lex order ≡ Wheeler language

50

Theorem [1] Myhill-Nerode theorem for W. languages. The following are
equivalent:

1. A regular language L is Wheeler
2. L is recognized by a Wheeler NFA
3. L is recognized by a Wheeler DFA
4. The Myhill-Nerode equivalence classes of L form a finite number of

intervals in co-lex order.

[1] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

In fact, given a WNFA we can always
build an equivalent WDFA of at most
twice the size!

Overview of algorithmic results
on Wheeler languages

51

Overview of algorithmic results

52

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

min. equivalent
WDFA

if L(A) is W

equivalent sorted
WNFA

if L(A) is W

is L(A) Wheeler?

Is A Wheeler?

inputoutput

m = size of input A
M = size of output

Overview of algorithmic results

53

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2]

min. equivalent
WDFA

if L(A) is W PSPACE-H [1]

equivalent sorted
WNFA

if L(A) is W

is L(A) Wheeler? PSPACE-C [1]

Is A Wheeler? NP-C [2]

inputoutput

m = size of input A
M = size of output

Overview of algorithmic results

54

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2) [3]

min. equivalent
WDFA

if L(A) is W PSPACE-H [1]
?

equivalent sorted
WNFA

if L(A) is W

is L(A) Wheeler? PSPACE-C [1]

Is A Wheeler? NP-C [2] O(m2) [3]

inputoutput

m = size of input A
M = size of output

Overview of algorithmic results

55

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.
[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2) [3] O(m) [3]

min. equivalent
WDFA

if L(A) is W PSPACE-H [1]
?

O(M log M)
[ongoing]

equivalent sorted
WNFA

if L(A) is W

is L(A) Wheeler? PSPACE-C [1] Θ(m2) [4]

Is A Wheeler? NP-C [2] O(m2) [3] O(m) [3]

inputoutput

m = size of input A
M = size of output

Overview of algorithmic results

56

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.
[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023
[5] Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, Nicola Prezza. Sorting Finite Automata via Partition
Refinement. ESA 2023.
[6] Jarno Alanko, Nicola Cotumaccio, Nicola Prezza. Linear-time Minimization of Wheeler DFAs. DCC 2022.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2) [3] O(m) [3] NP-C [2]

min. equivalent
WDFA

if L(A) is W PSPACE-H [1]
?

O(M log M)
[ongoing]

polytime [3,6]

equivalent sorted
WNFA

if L(A) is W

O(m log m) [5]

is L(A) Wheeler? PSPACE-C [1] Θ(m2) [4]
trivial

Is A Wheeler? NP-C [2] O(m2) [3] O(m) [3]

inputoutput

m = size of input A
M = size of output

Overview of algorithmic results

57

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.
[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023
[5] Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, Nicola Prezza. Sorting Finite Automata via Partition
Refinement. ESA 2023.
[6] Jarno Alanko, Nicola Cotumaccio, Nicola Prezza. Linear-time Minimization of Wheeler DFAs. DCC 2022.

NFA 2-NFA DFA WNFA WDFA

W. order of A
if A is W

NP-C [2] O(m2) [3] O(m) [3] NP-C [2] O(m) [3]

min. equivalent
WDFA

if L(A) is W PSPACE-H [1]
?

O(M log M)
[ongoing]

polytime [3,6] O(m) [6]

equivalent sorted
WNFA

if L(A) is W

O(m log m) [5]
O(m) [3]

is L(A) Wheeler? PSPACE-C [1] Θ(m2) [4]
trivial

Is A Wheeler? NP-C [2] O(m2) [3] O(m) [3]

inputoutput

m = size of input A
M = size of output

Generalizing:
p-sortable automata and languages

58

Searching a partially-ordered set

Classic algorithmic result:

Given a set of objects and a partial order < on the set such that width(<) = p, then:

● Searching the set requires at least p log (n/p) operations

● There exists a data structure supporting search in time O(p log (n/p))

Intuition: decompose < into p totally-sorted chains (Dilworth’s theorem), run binary search on each chain.

59

Searching a partially-ordered set

Classic algorithmic result:

Given a set of objects and a partial order < on the set such that width(<) = p, then:

● Searching the set requires at least p log (n/p) operations

● There exists a data structure supporting search in time O(p log (n/p))

Intuition: decompose < into p totally-sorted chains (Dilworth’s theorem), run binary search on each chain.

60

Hasse
diagram of <

width(<) = 2

A chain decomposition
into p=2 chains

 <

 < <

Generalization to arbitrary NFA: co-lex orders
For arbitrary NFAs: same idea of the Wheeler case, but do not require that < is total.

61

Generalization to arbitrary NFA: co-lex orders

sort

62

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

For arbitrary NFAs: same idea of the Wheeler case, but do not require that < is total.

Any NFA admits a partial co-lex order of its nodes.
We are interested in a minimum-width one (Wheeler NFA are the case width=1)

co-lex orders

A possible chain partitioning (yellow, blue)
of the partial order.

63

co-lex orders

A possible chain partitioning (yellow, blue)
of the partial order.

Indexing ≡ states reached by any string (in
the example, “C”) always form a convex set
in the partial order.

64

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

65

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p

66

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p ⇒ powerset construction

67

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p *

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p

68

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p *

● NFA compression: log(p) + O(1) bits per edge (rather than O(log n))

69

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p *

● NFA compression: log(p) + O(1) bits per edge (rather than O(log n))

● NFA membership / pattern matching: O(p2 loglog p) time per character (rather than graph’s size)

70

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

co-lex orders
Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

● NFA of size n and width p ⇒ powerset construction ⇒ DFA of size ≤ (n-p+1)•2p and width ≤ 2p *

● NFA compression: log(p) + O(1) bits per edge (rather than O(log n))

● NFA membership / pattern matching: O(p2 loglog p) time per character (rather than graph’s size)

● Fast index construction with state-of-the-art algorithms.

71

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P., 2023. Co-lexicographically Ordering Automata and Regular Languages - Part I. JACM

Team & Funding Funded by ERC StG “REGINDEX: Compressed indexes for regular languages with applications
to computational pan-genomics” grant nr 101039208.
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

72

