From text indexing to regular language indexing

One FLAT World Seminar

N ber 26, 2025 . s
DYOIRST Universita

Ca'Foscarl
Venezia

Nicola Prezza, Ca’ Foscari University of Venice, Iltaly

Overview

1. Sorting and indexing

2. Wheeler automata / languages

3. p-sortable automata / languages

Sorting and indexing

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42
4 9 12 42 78

Benefits: the sorted list is

e Searchable (binary search)
e More compressible (store just the differences between consecutive integers)

Sorting

Not just integers. Other example: suffixes of a string

Sorting

Not just integers. Other example: suffixes of a string SA
The Suffix Array (SA)

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string searches." siam Journal on Computing 22.5 (1993): 935-948.

Text indexing

Not just integers. Other example: suffixes of a string SA
The Suffix Array (SA)

Indexing and compression still work!

e Indexing: suffixies prefixed by a word (e.g. “ab”) form a range. Can be found by binary search on SA.

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string searches." siam Journal on Computing 22.5 (1993): 935-948.

Text indexing

Not just integers. Other example: suffixes of a string SA
The Suffix Array (SA)

Indexing and compression still work!

e Indexing: suffixies prefixed by a word (e.g. “ab”) form a range. Can be found by binary search on SA.
e SAcan be compressed while still supporting fast pattern matching.

Roberto Grossi, Jeffrey Scott Vitter, 2000. Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching. STOC.
Paolo Ferragina, Giovanni Manzini, 2000. Opportunistic Data Structures with Applications. FOCS.

Text indexing

Observations:

e Astring is a very simple kind of NFA

10

Text indexing

Observations:
e Astring is a very simple kind of NFA

e “pattern matching on NFA” = find states reached by given string (“ab” in the example)

11

Text indexing

Observations:
e Astring is a very simple kind of NFA
e “pattern matching on NFA” = find states reached by given string (“ab” in the example)

e Membership = pattern matching from the source

12

Text indexing

Observations:
e Astring is a very simple kind of NFA
e “pattern matching on NFA” = find states reached by given string (“ab” in the example)

e Membership = pattern matching from the source

Can we generalize suffix sorting to regular languages?
Ideally: queries in O(|P|) time, where P is the query string.

13

Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries

Count: given string P, return the number of states reached by a path labeled P

Example:

T QD T e count(“T”")
C@ e count(“TT”
start — : @l ¢

=2
) =
count(“CT”) =

1
1

14

Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

e Locate: given string P, return the states reached by a path labeled P

Example:
° locate(“T”) = {1,3}

p ®D . . locate(“T”) = {1}
start aggi@l . locate(“T") = {3)

15

Problem definition

Problem (regular language indexing)

Given a NFA, build a (small) data structure supporting efficiently the following queries:

e Membership: given string P, is a final state reached by a path labeled P starting in the source?

Example:

o
DD
o e membership(“TTT") = true

e membership(“C”) = false

16

Applications

Regular expression boundary
as many times as
atch anything possible match upper and
match the @ lower case A
brackets T / symbol through Z

_)) II\w._%+-]1+@[\w.-]+\ [2,4}
Regular expression matching (e.g. linux grep) f A I’ 7

(matching a regex on text) R S Kimes it o more

than four times

17

Applications

Regular expression boundary
as many times as
atch anything possible match upper and
match the @ lower case A
brackets T / symbol through Z

)) . I\w._%+-]+@[\w.-]+\ [71{2,4}/
Regular expression matching (e.g. linux grep) f A # 7

(matching a regex on text) I, g ":;:;‘;;::‘:,::;*

Graph databases (e.g. regular path queries)
(matching a regex on a graph)

18

Applications

Regular expression boundary
as many times as
atch anything possible match upper and
match the @ lower case A
brackets T / symbol through Z

. . _ II\W._%+-]+@[\w.-]+\ [Z){2,4}/
Regular expression matching (e.g. linux grep) f A # 7
(matching a regex on text) I, g ‘m':;:;';z::‘:,::vf:

Graph databases (e.g. regular path queries) B
(matching a regex on a graph) /ﬁf

ACTCGGTG

\ /

GA

-

Bioinformatics (pattern matching on pan-genome graphs).
(matching a text on graph)

19

Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

e Matching a regular expression E on text T requires Q(|E| « |T|) time [Backurs, Indyk FOCS ‘16]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016.

20

Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

e Matching a regular expression E on text T requires Q(|E| « |T|) time [Backurs, Indyk FOCS ‘16]

e Regular path queries (emptiness) require quadratic time: size of graph times size of NFA for the regex
[Casel, Schmid, LMCS’23]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016.

Katrin Casel, Markus L. Schmid. "Fine-grained complexity of regular path queries." Logical Methods in Computer Science 19 (2023).

21

Lower bounds

Unfortunately, unless the Strong Exponential Time Hypothesis (SETH) fails:

e Matching a regular expression E on text T requires Q(|E| « |T|) time [Backurs, Indyk FOCS ‘16]

e Regular path queries (emptiness) require quadratic time: size of graph times size of NFA for the regex
[Casel, Schmid, LMCS’23]

e Solving pattern matching queries on labeled graphs requires Q(m * n) time, where m is the graph’s size
and n is the query length [Equi et al. TALG’23]

Arturs Backurs, Piotr Indyk. "Which regular expression patterns are hard to match?." 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016.

Katrin Casel, Markus L. Schmid. "Fine-grained complexity of regular path queries." Logical Methods in Computer Science 19 (2023).

Massimo Equi, Veli Makinen, Alexandru Tomescu, Roberto Grossi (2023). On the complexity of string matching for graphs. ACM Transactions on
Algorithms, 19(3), 1-25.

22

Not hard on all NFA!

Although these problems are hard in general, for some NFA they are easy: paths, trees, de Bruijn graphs, ...
Next slides: what is the most general class of “indexable/sortable” NFA?

e The class of Wheeler NFA / languages

e Generalization to arbitrary NFA

23

Wheeler automata
and
Wheeler languages

24

Myhill-Nerode relation

We take our first steps from a central object in finite automata theory: the MN equivalence relation
Intuition: we will turn the MN relation into an order, and use it to index the NFA

25

Myhill-Nerode relation

e We take our first steps from a central object in finite automata theory: the MN equivalence relation
e Intuition: we will turn the MN relation into an order, and use it to index the NFA
e MN equivalence between states: coarsest equivalence relation satisfying* :

* For simplicity: (1) take all states to be final. (2) nonexistent transitions go into a (virtual) non-final sink.

26

Myhill-Nerode relation

e We take our first steps from a central object in finite automata theory: the MN equivalence relation
e Intuition: we will turn the MN relation into an order, and use it to index the NFA
e MN equivalence between states: coarsest equivalence relation satisfying* :

* For simplicity: (1) take all states to be final. (2) nonexistent transitions go into a (virtual) non-final sink.

27

Switching to an order

... but to index, we need an order. What if we turn = (equivalence relation) into a total order <?

Equivalence relation =

reflexive:
symmetric:
transitive:

X X X
e 1 1
< < X

Total order <

reflexive:
antisymmetric:
transitive:

strongly connected:

28

Switching to an order

... but to index, we need an order. What if we turn = (equivalence relation) into a total order <?

: U,S V,

29

Ordered Automata

We obtain:

Def: ordered automaton (OA)
An OA is a NFA for which there exists a total order < satisfying:

(> a2 >
< = U<V

* distinction between final/non final states does not matter in this definition. We allow incomplete NFA.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

30

Ordered Automata

We obtain:

Def: ordered automaton (OA)
An OA is a NFA for which there exists a total order < satisfying:

(> a2 >
< = usvVv

Such a total order does not always exist!

* distinction between final/non final states does not matter in this definition. We allow incomplete NFA.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

31

Ordered Automata

e Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

32

Ordered Automata

e Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

e However, OA are not good enough for indexing: states reached by the same letter are not necessarily
contiguous in the order. We miss a base case! let's add it ...

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

33

Ordered Automata

e Interestingly, Shyr and Thierrin prove that OA recognize only star-free languages.

e However, OA are not good enough for indexing: states reached by the same letter are not necessarily
contiguous in the order. We miss a base case! let's add it ...

Shyr, H.J. and Thierrin, G., 1974. Ordered automata and associated languages. Tamkang J. Math, 5(1)

34

Wheeler Automata

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order < of its states satisfying the
following two axioms:

Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

35

Wheeler Automata

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order < of its states satisfying the
following two axioms:

We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)

Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

36

Wheeler Automata

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order < of its states satisfying the
following two axioms:

: u’s V’
Ab®
* We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
> Axiom 1 implies input consistency: all incoming edges of a given state bear the same label. Not restrictive.

Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

37

Wheeler Automata

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order < of its states satisfying the
following two axioms:

We assume that, if the source state has in-degree zero, then it comes first in the order (equiv: dummy incoming edge labeled #)
Axiom 1 implies input consistency: all incoming edges of a given state bear the same label. Not restrictive.
Note: WNFA C OA = Wheeler languages are star-free

*%

*k%k

Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

38

Wheeler Automata

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order < of its states satisfying the
following two axioms:

a a b
start —
N

Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

39

Wheeler Automata

Def: Wheeler Automaton (WNFA)

A NFA is said to be Wheeler iff there exists a total order < of its states satisfying the
following two axioms:

Axiom (1) makes things much more interesting w.r.t. Ordered Automata! Next slides:
e Efficient encoding

e Linear-time queries
e Wheeler languages

Gagie, Manzini, Sirén, 2017. "Wheeler graphs: A framework for BWT-based data structures." TCS

40

Bipartite representation

Useful visualization of the Wheeler order: bipartite representation.

e Build a bipartite graph: two copies of the nodes, sorted by the candidate order.

e Same edges of the input NFA, but drawn left-to-right.
e The order is Wheeler & Same-letter edges must not cross.

"’
start — j

41

Efficient encoding

= we can store the WNFA in O(1) bits per edge*! just store out-going labels and

b
a
start — j

*assuming constant-size alphabet for simplicity

42

Pattern matching

Also:

same-letter edges must not cross
=

Nodes reached by a given string P form a range in the total order

43

Pattern matching

Also:
same-letter edges must not cross

=
Nodes reached by a given string P form a range in the total order

Consequences:

e \WNFAs generalize known indexes on strings, trees, de
Bruijn graphs...

e Indexed pattern matching/membership in optimal O(|P|)
time

44

Pattern matching

Figure 11. Searching nodes reached by a path labeled “aba” in a Wheeler graph. Top left: we begin
with the nodes reached by the empty string (full range). Top right: range obtained from the previous
one following edges labeled “a’. Bottom left: range obtained from the previous one following edges
labeled 'b’. Bottom right: range obtained from the previous one following edges labeled “a’. This last
range contains all nodes reached by a path labeled “aba”

45

Wheeler languages

T @DT e e LT <l < TI' < TIT € TLIE ...
C) 3
start — @l» 0 B] i l I I

minimum DFAforL=TT* | CT

46

Wheeler languages

T/QDT e <C<T<CT < TT < TIT < TTTT ...

2 3
w ()C@OIE OO EH LT 17

Finite number of Myhill-Nerode intervals in co-lex order

minimum DFAfor L=TT* | CT

47

Wheeler languages

)

TG)D e 2 C< Tz €1 < T < TIT & TTIT ...
7
OO e e

Finite number of Myhill-Nerode intervals in co-lex order = Wheeler language

minimum DFAforL=TT* | CT

[1] J. Alanko, G. D'Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020. 48

Wheeler languages

T/@“_‘)T E e LT 2T € ' € TIT ¥ VIR .

e)
st;m—»/() L) l@ 0 - L] [3] K | L

Finite number of Myhill-Nerode intervals in co-lex order = Wheeler language

minimum DFAfor L=TT* | CT

Theorem [1] Myhill-Nerode theorem for W. languages. The following are

equivalent:
1. Aregular language L is Wheeler
2. L isrecognized by a Wheeler NFA
3. L is recognized by a Wheeler DFA
4. The Myhill-Nerode equivalence classes of L form a finite number of

intervals in co-lex order.

[1] J. Alanko, G. D'Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

49

Wheeler languages

T/@“_‘)T e« C<x<TxCl'< Tl < TIT £ TTIT ...
stun—*/()\\ix %) l@ 0 2 L] 3] [1 I L

Finite number of Myhill-Nerode intervals in co-lex order = Wheeler language

minimum DFAfor L=TT* | CT

; . In fact, given a WNFA we can always
2. L is recognized by a Wheeler NFA build an equivalent WDFA of at most

3. L is recognized by a Wheeler DFA twice the size!

[1] J. Alanko, G. D'Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

50

Overview of algorithmic results
on Wheeler languages

51

Overview of algorithmic results T e ot oo

output—nPut NFA 2-NFA DFA WNFA WDFA

W. order of A
if Ais W
min. equivalent
WDFA
if L(A) is W
equivalent sorted
WNFA
if L(A) is W
is L(A) Wheeler?

Is A Wheeler?

52

Overview of algorithmic results T e ot oo

output——/nput NFA

W. order of A NP-C [2]
if Ais W
min. equivalent
WDFA
if L(A) is W PSPACE-H [1]
equivalent sorted
WNFA
if L(A) is W
is L(A) Wheeler? PSPACE-C [1]

Is A Wheeler? NP-C [2]

2-NFA DFA WNFA WDFA

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.

53

Overview of algorithmic results m = size of input A

M = size of output

output—nPut NFA 2-NFA DFA WNFA WDFA

W. order of A NP-C [2] O(m?) [3]
ifAis W

min. equivalent
WDFA
if L(A) is W PSPACE-H [1]

equivalent sorted
WNFA
if L(A) is W
is L(A) Wheeler? PSPACE-C [1]
Is A Wheeler? NP-C [2] O(m?) [3]

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.
[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.
[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

54

Overview of algorithmic results m = size of input A

M = size of output

output—nPut NFA 2-NFA DFA WNFA WDFA

W. order of A NP-C [2] O(m?) [3] O(m) [3]
if Ais W
min. equivalent
WDFA
if L(A) is W PSPACE-H [1] O(M log M)
”? [ongoing]
equivalent sorted
WNFA
if L(A) is W
is L(A) Wheeler? PSPACE-C [1] O(m?) [4]
Is A Wheeler? NP-C [2] O(m?) [3] O(m) [3]

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.

[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.

[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023

55

output input

W. order of A
if Ais W
min. equivalent
WDFA
if L(A) is W
equivalent sorted
WNFA
if L(A) is W
is L(A) Wheeler?

Is A Wheeler?

Overview of algorithmic results

NFA

NP-C [2]

PSPACE-H [1]

PSPACE-C [1]

NP-C [2]

2-NFA

O(m?) [3]

O(m?) [3]

m = size of input A
M = size of output

DFA WNFA WDFA

O(m) [3] NP-C [2]

polytime [3,6]
O(M log M)
[ongoing]
O(m log m) [5]

O(m?) [4]
trivial
O(m) [3]

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.

[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.

[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023
[5] Ruben Becker, Manuel Caceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, Nicola Prezza. Sorting Finite Automata via Partition

Refinement. ESA 2023.

[6] Jarno Alanko, Nicola Cotumaccio, Nicola Prezza. Linear-time Minimization of Wheeler DFAs. DCC 2022. 56

Overview of algorithmic results m = size of input A

M = size of output

output—nPut NFA 2-NFA DFA WNFA WDFA

W. order of A NP-C [2] O(m?) [3] O(m) [3] NP-C [2] O(m) [3]
if Ais W

min. equivalent

WDFA polytime [3,6] O(m) [6]
if L(A) is W PSPACE-H [1] O(M log M)
? [ongoing]
equivalent sorted ' O(m log m) [5]
WNFA O(m) [3]
if L(A) is W
is L(A) Wheeler? | PSPACE-C [1] O(m?) [4]
trivial
Is A Wheeler? NP-C [2] O(m?) [3] O(m) [3]

[1] Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages: a danger zone. ICTCS 2021.

[2] Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs. Algorithmica 2022.

[3] J. Alanko, G. D’Agostino, A. Policriti, and N. P. Regular Languages meet Prefix Sorting. SODA 2020.

[4] Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Alberto Policriti, and Nicola Prezza. Optimal wheeler language recognition. SPIRE 2023
[5] Ruben Becker, Manuel Caceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, Nicola Prezza. Sorting Finite Automata via Partition
Refinement. ESA 2023.

[6] Jarno Alanko, Nicola Cotumaccio, Nicola Prezza. Linear-time Minimization of Wheeler DFAs. DCC 2022. 57

Generalizing:
p-sortable automata and languages

58

Searching a partially-ordered set

Classic algorithmic result:
Given a set of objects and a partial order < on the set such that width(<) = p, then:
e Searching the set requires at least p log (n/p) operations

e There exists a data structure supporting search in time O(p log (n/p))

Intuition: decompose < into p totally-sorted chains (Dilworth’s theorem), run binary search on each chain.

59

Searching a partially-ordered set

Classic algorithmic result:
Given a set of objects and a partial order < on the set such that width(<) = p, then:
e Searching the set requires at least p log (n/p) operations

e There exists a data structure supporting search in time O(p log (n/p))

Intuition: decompose < into p totally-sorted chains (Dilworth’s theorem), run binary search on each chain.

®-O . y
Hasse A chain decomposition
diagram of < into p=2 chains

-0-0

width(<) = 2

60

Generalization to arbitrary NFA: co-lex orders

For arbitrary NFAs: same idea of the Wheeler case, but do not require that < is total.

61

Generalization to arbitrary NFA: co-lex orders

For arbitrary NFAs: same idea of the Wheeler case, but do not require that < is total.

Any NFA admits a partial co-lex order of its nodes.
We are interested in a minimum-width one (Wheeler NFA are the case width=1)

C T T

£ = ETICO Ty

----> Hasse diagram

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
62

£ = BTCCT Ty

----> Hasse diagram

co-lex orders

A possible chain partitioning (yellow, blue)
of the partial order.

63

co-lex orders

A possible chain partitioning (yellow, blue)
of the partial order.

C
~
start — . e
.\ C
R\ =S
(4

£ = BTCCT Ty

----> Hasse diagram

T Indexing = states reached by any string (in
the example, “C”) always form a convex set
in the partial order.

64

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
65

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

e NFA of size n and width p

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
66

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

e NFA of size n and width p = powerset construction

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
67

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

e NFA of size n and width p = powerset construction = DFA of size < (n-p+1)2P and width < 2P *

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
68

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

e NFA of size n and width p = powerset construction = DFA of size < (n-p+1)2P and width < 2P *

e NFA compression: log(p) + O(1) bits per edge (rather than O(log n))

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
69

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

e NFA of size n and width p = powerset construction = DFA of size < (n-p+1)2P and width < 2P *
e NFA compression: log(p) + O(1) bits per edge (rather than O(log n))

e NFA membership / pattern matching: O(p? loglog p) time per character (rather than graph’s size)

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
70

co-lex orders

Let n = number of states.

Results. p = width(<) is an important parameter for NFAs:

e NFA of size n and width p = powerset construction = DFA of size < (n-p+1)2P and width < 2P *
e NFA compression: log(p) + O(1) bits per edge (rather than O(log n))
e NFA membership / pattern matching: O(p? loglog p) time per character (rather than graph’s size)

e Fast index construction with state-of-the-art algorithms.

Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, N. P, 2023. Co-lexicographically Ordering Automata and Regular Languages - Part |. JACM
71

Team & Funding

Funded by ERC StG “REGINDEX: Compressed indexes for regular languages with applications
to computational pan-genomics” grant nr 101039208.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Universita
Ca'Foscari
Venezia

European Research Council

statiishes by Me European Commissicn

72

